
Three coins are tossed together to find the probability of getting:
(i) exactly two heads
(ii) at most two heads
(iii) at least one head and one tail
(iv) no tails
Answer
415.9k+ views
Hint: Before attempting this question one should have prior knowledge about the concept of probability and also remember that Probability of happening of an event= \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\], using this information can help you to approach the solution of the problem.
Complete step-by-step solution:
According to the given information, we know that 3 coins are tossed together
Also, we know that when three coins are tossed simultaneously, the total number of outcomes = 8 i.e., (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT)
Probability for exactly two heads
Let X be the event of getting exactly two heads.
So, the number of favorable cases is (HHT, HTH, THH)
Therefore n(X) = 3
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (X) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(X)= $\dfrac{3}{8}$
Probability of at most two heads
Let Y be the event of getting at most two heads
Therefore, no. of favorable cases is (HHT, HTH, TTT, THH, TTH, THT, HTT)
So, n(Y)=7
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Y) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(Y) = $\dfrac{7}{8}$
Probability for at least one head and one tail
Let Z be the event of getting at least one head and one tail
Therefore, no. of favorable events, = (HHT, HTH, THH, TTH, THT, HTT)
So, n(Z)=6
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Z) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P (Z) =$\dfrac{6}{8} = \dfrac{3}{4}$
Probability for no tails
Let A be the event of getting no tails
Therefore, no. of favorable events = (HHH)
So, n(A)=1
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (A) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(A) = $\dfrac{1}{8}$
Note: In the above question we knew that three coins are tossed also we know that when we toss one coin there are only two outcomes either head or tails since in this case we have to toss three coins simultaneously we found the total outcomes possible in this case which we found that 8 are the total outcomes by using the basic reasoning language that one coin can show only head or tail at a time so the outcomes we got for the three coins was (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT) then for each given case we used the formula of Probability of happening of an event which is given by \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\].
Complete step-by-step solution:
According to the given information, we know that 3 coins are tossed together
Also, we know that when three coins are tossed simultaneously, the total number of outcomes = 8 i.e., (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT)
Probability for exactly two heads
Let X be the event of getting exactly two heads.
So, the number of favorable cases is (HHT, HTH, THH)
Therefore n(X) = 3
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (X) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(X)= $\dfrac{3}{8}$
Probability of at most two heads
Let Y be the event of getting at most two heads
Therefore, no. of favorable cases is (HHT, HTH, TTT, THH, TTH, THT, HTT)
So, n(Y)=7
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Y) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(Y) = $\dfrac{7}{8}$
Probability for at least one head and one tail
Let Z be the event of getting at least one head and one tail
Therefore, no. of favorable events, = (HHT, HTH, THH, TTH, THT, HTT)
So, n(Z)=6
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Z) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P (Z) =$\dfrac{6}{8} = \dfrac{3}{4}$
Probability for no tails
Let A be the event of getting no tails
Therefore, no. of favorable events = (HHH)
So, n(A)=1
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (A) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(A) = $\dfrac{1}{8}$
Note: In the above question we knew that three coins are tossed also we know that when we toss one coin there are only two outcomes either head or tails since in this case we have to toss three coins simultaneously we found the total outcomes possible in this case which we found that 8 are the total outcomes by using the basic reasoning language that one coin can show only head or tail at a time so the outcomes we got for the three coins was (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT) then for each given case we used the formula of Probability of happening of an event which is given by \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\].
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
