
Three coins are tossed together to find the probability of getting:
(i) exactly two heads
(ii) at most two heads
(iii) at least one head and one tail
(iv) no tails
Answer
510.7k+ views
Hint: Before attempting this question one should have prior knowledge about the concept of probability and also remember that Probability of happening of an event= \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\], using this information can help you to approach the solution of the problem.
Complete step-by-step solution:
According to the given information, we know that 3 coins are tossed together
Also, we know that when three coins are tossed simultaneously, the total number of outcomes = 8 i.e., (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT)
Probability for exactly two heads
Let X be the event of getting exactly two heads.
So, the number of favorable cases is (HHT, HTH, THH)
Therefore n(X) = 3
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (X) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(X)= $\dfrac{3}{8}$
Probability of at most two heads
Let Y be the event of getting at most two heads
Therefore, no. of favorable cases is (HHT, HTH, TTT, THH, TTH, THT, HTT)
So, n(Y)=7
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Y) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(Y) = $\dfrac{7}{8}$
Probability for at least one head and one tail
Let Z be the event of getting at least one head and one tail
Therefore, no. of favorable events, = (HHT, HTH, THH, TTH, THT, HTT)
So, n(Z)=6
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Z) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P (Z) =$\dfrac{6}{8} = \dfrac{3}{4}$
Probability for no tails
Let A be the event of getting no tails
Therefore, no. of favorable events = (HHH)
So, n(A)=1
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (A) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(A) = $\dfrac{1}{8}$
Note: In the above question we knew that three coins are tossed also we know that when we toss one coin there are only two outcomes either head or tails since in this case we have to toss three coins simultaneously we found the total outcomes possible in this case which we found that 8 are the total outcomes by using the basic reasoning language that one coin can show only head or tail at a time so the outcomes we got for the three coins was (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT) then for each given case we used the formula of Probability of happening of an event which is given by \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\].
Complete step-by-step solution:
According to the given information, we know that 3 coins are tossed together
Also, we know that when three coins are tossed simultaneously, the total number of outcomes = 8 i.e., (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT)
Probability for exactly two heads
Let X be the event of getting exactly two heads.
So, the number of favorable cases is (HHT, HTH, THH)
Therefore n(X) = 3
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (X) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(X)= $\dfrac{3}{8}$
Probability of at most two heads
Let Y be the event of getting at most two heads
Therefore, no. of favorable cases is (HHT, HTH, TTT, THH, TTH, THT, HTT)
So, n(Y)=7
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Y) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(Y) = $\dfrac{7}{8}$
Probability for at least one head and one tail
Let Z be the event of getting at least one head and one tail
Therefore, no. of favorable events, = (HHT, HTH, THH, TTH, THT, HTT)
So, n(Z)=6
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (Z) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P (Z) =$\dfrac{6}{8} = \dfrac{3}{4}$
Probability for no tails
Let A be the event of getting no tails
Therefore, no. of favorable events = (HHH)
So, n(A)=1
We know that Probability of happening of an event = \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
So, probability of exactly two heads i.e. P (A) =\[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\]
Substituting the given values in the above formula we get
P(A) = $\dfrac{1}{8}$
Note: In the above question we knew that three coins are tossed also we know that when we toss one coin there are only two outcomes either head or tails since in this case we have to toss three coins simultaneously we found the total outcomes possible in this case which we found that 8 are the total outcomes by using the basic reasoning language that one coin can show only head or tail at a time so the outcomes we got for the three coins was (HHH, HHT, HTH, THH, TTH, THT, HTT, TTT) then for each given case we used the formula of Probability of happening of an event which is given by \[\dfrac{{Total{\text{ }}number{\text{ }}of{\text{ }}favourable{\text{ }}cases}}{{Total{\text{ }}Number{\text{ }}of{\text{ }}possible{\text{ }}outcomes}}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

