
There are two lots of identical articles with different amounts of standard and defective articles. There are $N$ articles in the first lot, $n$ of which are defective and $M$ articles in the second lot, $m$ of which are defective. $K$ articles are selected from the first lot and $L$ articles from the second and a new lot of results. Find the probability that an article selected at random from the new lot is defective.
a) $\dfrac{\text{KnM+LmN}}{MN(K+L)}$
b) $\dfrac{\text{KnM+MmN}}{MN(K+M)}$
c) $\dfrac{\text{LnM+LmN}}{MN(K+M)}$
d) $\text{1-}\left( \dfrac{\text{KnM+LmN}}{MN(K+L)} \right)$
Answer
579k+ views
Hint: Use the concept of basic definition of probability and the rule of AND and OR between the events.
$P(Event)=\dfrac{\rm{Favourable \space cases}}{\rm{Total \space cases}}$
\[P\left( A\text{ }or\text{ }B \right)\text{ }=\text{ }P\left( A \right)\text{ }+\text{ }P\left( B \right)\]
\[P\left( A\text{ }and\text{ }B \right)\text{ }=\text{ }P\left( A \right)\text{ }\times \text{ }P\left( B \right)\]
We need to find the probability of an article selected at random from the new lot being defective.
Complete step by step answer:
Given: There are two lots of identical articles with different amounts of standard and defective articles.
$N$ article in the first lot, $n$ of which are defective
$M$ articles in the second lot, $m$ of which are defective.
$K$ articles are selected from the first lot and $L$ articles from the second and a new lot of results.
$P({{E}_{1}})$: The selected article is from ${{1}^{st}}$ lot $=\dfrac{\rm{Number\text{ }of\text{ }articles\text{ }selected\text{ }from\text{ }the\text{ }first\text{ } lot}}{\rm{Total\text{ }article\operatorname{s}\text{ }in\text{ }the\text{ }new\text{ } lot\text{ }formed}}$ $=\dfrac{K}{K+L}$
$P({{E}_{2}})$ : The selected article is from ${{2}^{nd}}$ lot $=\dfrac{\rm{Number\text{ }of\text{ }articles\text{ }selected\text{ }from\text{ }the\text{ }\sec ond\text{ } lot}}{\rm{Total\text{ }article\operatorname{s}\text{ }in\text{ }the\text{ }new\text{ } lot\text{ }formed}}$ $=\dfrac{L}{K+L}$
Required Probability:\[\begin{align}
& ={\rm(Particle\text{ }selected\text{ }at\text{ }random\text{ }from\text{ }the\text{ }new\text{ } lot\text{ }being\text{ }defective)} \\
& ={\rm(Particle\text{ }selected\text{ }from\text{ }the\text{ }first\text{ } lot\text{ }being\text{ }defective)\text{ }} or \text{ } {\rm(Particle\text{ }selected\text{ }from\text{ }the\text{ }\sec ond\text{ } lot\text{ }being\text{ }defective)} \\
\end{align}\]
$\begin{align}
& =\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{1}^{st}}}} lot)\text{ }} {\rm and} \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{1}^{st}}}} lot)}+\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{2}^{nd}}}} lot)\text{ }} {\rm and}\operatorname{\rm{P}(defective\text{ }articl{{e}_{{{2}^{nd}}}} lot)} \\
& =\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{1}^{st}}}} lot)}\times \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{1}^{st}}}} lot)}+\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{2}^{nd}}}} lot)}\times \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{2}^{nd}}}} lot)} \\
& =\left( \dfrac{K}{K+L} \right)\times \dfrac{n}{N}+\left( \dfrac{L}{K+L} \right)\times \dfrac{m}{M} \\
& =\dfrac{1}{K+L}\left( \dfrac{Kn}{N}+\dfrac{Lm}{M} \right) \\
& =\dfrac{LmN+KnM}{NM(K+L)} \\
\end{align}$
Hence the correct answer is Option A.
Note: In such type of questions which involves probability knowing the definition of probability combined with OR and AND rule is needed. Accordingly follow the steps to find the required answer.
$P(Event)=\dfrac{\rm{Favourable \space cases}}{\rm{Total \space cases}}$
\[P\left( A\text{ }or\text{ }B \right)\text{ }=\text{ }P\left( A \right)\text{ }+\text{ }P\left( B \right)\]
\[P\left( A\text{ }and\text{ }B \right)\text{ }=\text{ }P\left( A \right)\text{ }\times \text{ }P\left( B \right)\]
We need to find the probability of an article selected at random from the new lot being defective.
Complete step by step answer:
Given: There are two lots of identical articles with different amounts of standard and defective articles.
$N$ article in the first lot, $n$ of which are defective
$M$ articles in the second lot, $m$ of which are defective.
$K$ articles are selected from the first lot and $L$ articles from the second and a new lot of results.
$P({{E}_{1}})$: The selected article is from ${{1}^{st}}$ lot $=\dfrac{\rm{Number\text{ }of\text{ }articles\text{ }selected\text{ }from\text{ }the\text{ }first\text{ } lot}}{\rm{Total\text{ }article\operatorname{s}\text{ }in\text{ }the\text{ }new\text{ } lot\text{ }formed}}$ $=\dfrac{K}{K+L}$
$P({{E}_{2}})$ : The selected article is from ${{2}^{nd}}$ lot $=\dfrac{\rm{Number\text{ }of\text{ }articles\text{ }selected\text{ }from\text{ }the\text{ }\sec ond\text{ } lot}}{\rm{Total\text{ }article\operatorname{s}\text{ }in\text{ }the\text{ }new\text{ } lot\text{ }formed}}$ $=\dfrac{L}{K+L}$
Required Probability:\[\begin{align}
& ={\rm(Particle\text{ }selected\text{ }at\text{ }random\text{ }from\text{ }the\text{ }new\text{ } lot\text{ }being\text{ }defective)} \\
& ={\rm(Particle\text{ }selected\text{ }from\text{ }the\text{ }first\text{ } lot\text{ }being\text{ }defective)\text{ }} or \text{ } {\rm(Particle\text{ }selected\text{ }from\text{ }the\text{ }\sec ond\text{ } lot\text{ }being\text{ }defective)} \\
\end{align}\]
$\begin{align}
& =\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{1}^{st}}}} lot)\text{ }} {\rm and} \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{1}^{st}}}} lot)}+\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{2}^{nd}}}} lot)\text{ }} {\rm and}\operatorname{\rm{P}(defective\text{ }articl{{e}_{{{2}^{nd}}}} lot)} \\
& =\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{1}^{st}}}} lot)}\times \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{1}^{st}}}} lot)}+\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{2}^{nd}}}} lot)}\times \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{2}^{nd}}}} lot)} \\
& =\left( \dfrac{K}{K+L} \right)\times \dfrac{n}{N}+\left( \dfrac{L}{K+L} \right)\times \dfrac{m}{M} \\
& =\dfrac{1}{K+L}\left( \dfrac{Kn}{N}+\dfrac{Lm}{M} \right) \\
& =\dfrac{LmN+KnM}{NM(K+L)} \\
\end{align}$
Hence the correct answer is Option A.
Note: In such type of questions which involves probability knowing the definition of probability combined with OR and AND rule is needed. Accordingly follow the steps to find the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

