
There are two lots of identical articles with different amounts of standard and defective articles. There are $N$ articles in the first lot, $n$ of which are defective and $M$ articles in the second lot, $m$ of which are defective. $K$ articles are selected from the first lot and $L$ articles from the second and a new lot of results. Find the probability that an article selected at random from the new lot is defective.
a) $\dfrac{\text{KnM+LmN}}{MN(K+L)}$
b) $\dfrac{\text{KnM+MmN}}{MN(K+M)}$
c) $\dfrac{\text{LnM+LmN}}{MN(K+M)}$
d) $\text{1-}\left( \dfrac{\text{KnM+LmN}}{MN(K+L)} \right)$
Answer
593.7k+ views
Hint: Use the concept of basic definition of probability and the rule of AND and OR between the events.
$P(Event)=\dfrac{\rm{Favourable \space cases}}{\rm{Total \space cases}}$
\[P\left( A\text{ }or\text{ }B \right)\text{ }=\text{ }P\left( A \right)\text{ }+\text{ }P\left( B \right)\]
\[P\left( A\text{ }and\text{ }B \right)\text{ }=\text{ }P\left( A \right)\text{ }\times \text{ }P\left( B \right)\]
We need to find the probability of an article selected at random from the new lot being defective.
Complete step by step answer:
Given: There are two lots of identical articles with different amounts of standard and defective articles.
$N$ article in the first lot, $n$ of which are defective
$M$ articles in the second lot, $m$ of which are defective.
$K$ articles are selected from the first lot and $L$ articles from the second and a new lot of results.
$P({{E}_{1}})$: The selected article is from ${{1}^{st}}$ lot $=\dfrac{\rm{Number\text{ }of\text{ }articles\text{ }selected\text{ }from\text{ }the\text{ }first\text{ } lot}}{\rm{Total\text{ }article\operatorname{s}\text{ }in\text{ }the\text{ }new\text{ } lot\text{ }formed}}$ $=\dfrac{K}{K+L}$
$P({{E}_{2}})$ : The selected article is from ${{2}^{nd}}$ lot $=\dfrac{\rm{Number\text{ }of\text{ }articles\text{ }selected\text{ }from\text{ }the\text{ }\sec ond\text{ } lot}}{\rm{Total\text{ }article\operatorname{s}\text{ }in\text{ }the\text{ }new\text{ } lot\text{ }formed}}$ $=\dfrac{L}{K+L}$
Required Probability:\[\begin{align}
& ={\rm(Particle\text{ }selected\text{ }at\text{ }random\text{ }from\text{ }the\text{ }new\text{ } lot\text{ }being\text{ }defective)} \\
& ={\rm(Particle\text{ }selected\text{ }from\text{ }the\text{ }first\text{ } lot\text{ }being\text{ }defective)\text{ }} or \text{ } {\rm(Particle\text{ }selected\text{ }from\text{ }the\text{ }\sec ond\text{ } lot\text{ }being\text{ }defective)} \\
\end{align}\]
$\begin{align}
& =\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{1}^{st}}}} lot)\text{ }} {\rm and} \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{1}^{st}}}} lot)}+\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{2}^{nd}}}} lot)\text{ }} {\rm and}\operatorname{\rm{P}(defective\text{ }articl{{e}_{{{2}^{nd}}}} lot)} \\
& =\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{1}^{st}}}} lot)}\times \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{1}^{st}}}} lot)}+\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{2}^{nd}}}} lot)}\times \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{2}^{nd}}}} lot)} \\
& =\left( \dfrac{K}{K+L} \right)\times \dfrac{n}{N}+\left( \dfrac{L}{K+L} \right)\times \dfrac{m}{M} \\
& =\dfrac{1}{K+L}\left( \dfrac{Kn}{N}+\dfrac{Lm}{M} \right) \\
& =\dfrac{LmN+KnM}{NM(K+L)} \\
\end{align}$
Hence the correct answer is Option A.
Note: In such type of questions which involves probability knowing the definition of probability combined with OR and AND rule is needed. Accordingly follow the steps to find the required answer.
$P(Event)=\dfrac{\rm{Favourable \space cases}}{\rm{Total \space cases}}$
\[P\left( A\text{ }or\text{ }B \right)\text{ }=\text{ }P\left( A \right)\text{ }+\text{ }P\left( B \right)\]
\[P\left( A\text{ }and\text{ }B \right)\text{ }=\text{ }P\left( A \right)\text{ }\times \text{ }P\left( B \right)\]
We need to find the probability of an article selected at random from the new lot being defective.
Complete step by step answer:
Given: There are two lots of identical articles with different amounts of standard and defective articles.
$N$ article in the first lot, $n$ of which are defective
$M$ articles in the second lot, $m$ of which are defective.
$K$ articles are selected from the first lot and $L$ articles from the second and a new lot of results.
$P({{E}_{1}})$: The selected article is from ${{1}^{st}}$ lot $=\dfrac{\rm{Number\text{ }of\text{ }articles\text{ }selected\text{ }from\text{ }the\text{ }first\text{ } lot}}{\rm{Total\text{ }article\operatorname{s}\text{ }in\text{ }the\text{ }new\text{ } lot\text{ }formed}}$ $=\dfrac{K}{K+L}$
$P({{E}_{2}})$ : The selected article is from ${{2}^{nd}}$ lot $=\dfrac{\rm{Number\text{ }of\text{ }articles\text{ }selected\text{ }from\text{ }the\text{ }\sec ond\text{ } lot}}{\rm{Total\text{ }article\operatorname{s}\text{ }in\text{ }the\text{ }new\text{ } lot\text{ }formed}}$ $=\dfrac{L}{K+L}$
Required Probability:\[\begin{align}
& ={\rm(Particle\text{ }selected\text{ }at\text{ }random\text{ }from\text{ }the\text{ }new\text{ } lot\text{ }being\text{ }defective)} \\
& ={\rm(Particle\text{ }selected\text{ }from\text{ }the\text{ }first\text{ } lot\text{ }being\text{ }defective)\text{ }} or \text{ } {\rm(Particle\text{ }selected\text{ }from\text{ }the\text{ }\sec ond\text{ } lot\text{ }being\text{ }defective)} \\
\end{align}\]
$\begin{align}
& =\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{1}^{st}}}} lot)\text{ }} {\rm and} \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{1}^{st}}}} lot)}+\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{2}^{nd}}}} lot)\text{ }} {\rm and}\operatorname{\rm{P}(defective\text{ }articl{{e}_{{{2}^{nd}}}} lot)} \\
& =\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{1}^{st}}}} lot)}\times \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{1}^{st}}}} lot)}+\operatorname{\rm{P}(selected\text{ }articl{{e}_{{{2}^{nd}}}} lot)}\times \operatorname{\rm{P}(defective\text{ }articl{{e}_{{{2}^{nd}}}} lot)} \\
& =\left( \dfrac{K}{K+L} \right)\times \dfrac{n}{N}+\left( \dfrac{L}{K+L} \right)\times \dfrac{m}{M} \\
& =\dfrac{1}{K+L}\left( \dfrac{Kn}{N}+\dfrac{Lm}{M} \right) \\
& =\dfrac{LmN+KnM}{NM(K+L)} \\
\end{align}$
Hence the correct answer is Option A.
Note: In such type of questions which involves probability knowing the definition of probability combined with OR and AND rule is needed. Accordingly follow the steps to find the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

