Answer
Verified
368.8k+ views
Hint: We have given n arithmetic means between 3 and 17 that means we have an AP of n+2 terms where first term is 3 and last term is 17. And use the data given in question to proceed further.
Complete step-by-step answer:
Let ‘n’ A.M.s be ${A_1},{A_2},{A_3}, \ldots ,{A_n}$
So we have the given A.P is
$3,{A_1},{A_2}, \ldots ,{A_n},17$
In our case we have
${a_n} = 17,a = 3$ and number of terms = (n+2)
$\because {a_n} = a + \left( {n - 1} \right)d$
$
17 = 3 + \left[ {\left( {n + 2} \right) - 1} \right]d \\
17 - 3 = \left( {n + 1} \right)d \\
\therefore d = \dfrac{{14}}{{\left( {n + 1} \right)}} \\
$
Now
$
{A_1} = a + d = 3 + \dfrac{{14}}{{n + 1}} \\
{A_n} = a + nd = 3 + n\dfrac{{14}}{{n + 1}} \\
$
As given in question,
$
\dfrac{{{A_n}}}{{{A_1}}} = \dfrac{3}{1} \\
\Rightarrow \dfrac{{3 + \dfrac{{14n}}{{n + 1}}}}{{3 + \dfrac{{14}}{{n + 1}}}} = 3 \\
$
$
\Rightarrow \dfrac{{3\left( {n + 1} \right) + 14n}}{{3\left( {n + 1} \right) + 14}} = 3 \\
\Rightarrow \dfrac{{17n + 3}}{{3n + 17}} = 3 \\
\Rightarrow 17n + 3 = 3\left( {3n + 17} \right). \\
\Rightarrow 17n + 3 = 9n + 51 \\
\Rightarrow 8n = 48 \Rightarrow n = 6 \\ $
Note: Whenever you get this type of question the key concept of solving is you have to solve like an AP of n+2 terms and simple mathematics to use the data given in question and use the formula of finding the last term of AP to get an answer.
Complete step-by-step answer:
Let ‘n’ A.M.s be ${A_1},{A_2},{A_3}, \ldots ,{A_n}$
So we have the given A.P is
$3,{A_1},{A_2}, \ldots ,{A_n},17$
In our case we have
${a_n} = 17,a = 3$ and number of terms = (n+2)
$\because {a_n} = a + \left( {n - 1} \right)d$
$
17 = 3 + \left[ {\left( {n + 2} \right) - 1} \right]d \\
17 - 3 = \left( {n + 1} \right)d \\
\therefore d = \dfrac{{14}}{{\left( {n + 1} \right)}} \\
$
Now
$
{A_1} = a + d = 3 + \dfrac{{14}}{{n + 1}} \\
{A_n} = a + nd = 3 + n\dfrac{{14}}{{n + 1}} \\
$
As given in question,
$
\dfrac{{{A_n}}}{{{A_1}}} = \dfrac{3}{1} \\
\Rightarrow \dfrac{{3 + \dfrac{{14n}}{{n + 1}}}}{{3 + \dfrac{{14}}{{n + 1}}}} = 3 \\
$
$
\Rightarrow \dfrac{{3\left( {n + 1} \right) + 14n}}{{3\left( {n + 1} \right) + 14}} = 3 \\
\Rightarrow \dfrac{{17n + 3}}{{3n + 17}} = 3 \\
\Rightarrow 17n + 3 = 3\left( {3n + 17} \right). \\
\Rightarrow 17n + 3 = 9n + 51 \\
\Rightarrow 8n = 48 \Rightarrow n = 6 \\ $
Note: Whenever you get this type of question the key concept of solving is you have to solve like an AP of n+2 terms and simple mathematics to use the data given in question and use the formula of finding the last term of AP to get an answer.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE