
There are ‘n’ A.M.s between 3 and 17. The ratio of the last mean to the first mean is 3:1 .find the value of n.
Answer
509.5k+ views
Hint: We have given n arithmetic means between 3 and 17 that means we have an AP of n+2 terms where first term is 3 and last term is 17. And use the data given in question to proceed further.
Complete step-by-step answer:
Let ‘n’ A.M.s be ${A_1},{A_2},{A_3}, \ldots ,{A_n}$
So we have the given A.P is
$3,{A_1},{A_2}, \ldots ,{A_n},17$
In our case we have
${a_n} = 17,a = 3$ and number of terms = (n+2)
$\because {a_n} = a + \left( {n - 1} \right)d$
$
17 = 3 + \left[ {\left( {n + 2} \right) - 1} \right]d \\
17 - 3 = \left( {n + 1} \right)d \\
\therefore d = \dfrac{{14}}{{\left( {n + 1} \right)}} \\
$
Now
$
{A_1} = a + d = 3 + \dfrac{{14}}{{n + 1}} \\
{A_n} = a + nd = 3 + n\dfrac{{14}}{{n + 1}} \\
$
As given in question,
$
\dfrac{{{A_n}}}{{{A_1}}} = \dfrac{3}{1} \\
\Rightarrow \dfrac{{3 + \dfrac{{14n}}{{n + 1}}}}{{3 + \dfrac{{14}}{{n + 1}}}} = 3 \\
$
$
\Rightarrow \dfrac{{3\left( {n + 1} \right) + 14n}}{{3\left( {n + 1} \right) + 14}} = 3 \\
\Rightarrow \dfrac{{17n + 3}}{{3n + 17}} = 3 \\
\Rightarrow 17n + 3 = 3\left( {3n + 17} \right). \\
\Rightarrow 17n + 3 = 9n + 51 \\
\Rightarrow 8n = 48 \Rightarrow n = 6 \\ $
Note: Whenever you get this type of question the key concept of solving is you have to solve like an AP of n+2 terms and simple mathematics to use the data given in question and use the formula of finding the last term of AP to get an answer.
Complete step-by-step answer:
Let ‘n’ A.M.s be ${A_1},{A_2},{A_3}, \ldots ,{A_n}$
So we have the given A.P is
$3,{A_1},{A_2}, \ldots ,{A_n},17$
In our case we have
${a_n} = 17,a = 3$ and number of terms = (n+2)
$\because {a_n} = a + \left( {n - 1} \right)d$
$
17 = 3 + \left[ {\left( {n + 2} \right) - 1} \right]d \\
17 - 3 = \left( {n + 1} \right)d \\
\therefore d = \dfrac{{14}}{{\left( {n + 1} \right)}} \\
$
Now
$
{A_1} = a + d = 3 + \dfrac{{14}}{{n + 1}} \\
{A_n} = a + nd = 3 + n\dfrac{{14}}{{n + 1}} \\
$
As given in question,
$
\dfrac{{{A_n}}}{{{A_1}}} = \dfrac{3}{1} \\
\Rightarrow \dfrac{{3 + \dfrac{{14n}}{{n + 1}}}}{{3 + \dfrac{{14}}{{n + 1}}}} = 3 \\
$
$
\Rightarrow \dfrac{{3\left( {n + 1} \right) + 14n}}{{3\left( {n + 1} \right) + 14}} = 3 \\
\Rightarrow \dfrac{{17n + 3}}{{3n + 17}} = 3 \\
\Rightarrow 17n + 3 = 3\left( {3n + 17} \right). \\
\Rightarrow 17n + 3 = 9n + 51 \\
\Rightarrow 8n = 48 \Rightarrow n = 6 \\ $
Note: Whenever you get this type of question the key concept of solving is you have to solve like an AP of n+2 terms and simple mathematics to use the data given in question and use the formula of finding the last term of AP to get an answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

