There are 9999 tickets bearing numbers 0001, 0002, ……, 9999. If one ticket is selected from these tickets at random, the probability that the numbers on the ticket will consists of all different digits is
(a) $\dfrac{5040}{9999}$
(b) $\dfrac{5000}{9999}$
(c) $\dfrac{5030}{9999}$
(d) None of these
Last updated date: 17th Mar 2023
•
Total views: 306k
•
Views today: 6.86k
Answer
306k+ views
Hint: To find the probability, we need to find the number of favorable outcomes i.e. the number of ways in which we can draw a ticket having number with different digits on it and also, we need to find the total number of possible cases i.e. the number of ways in which we can draw a ticket from a from 9999 tickets. Both of these can be found by using the concept of permutation and combination.
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
From the number of permutation and combination, the number of ways in which we can select ‘r’ things from total of ‘n’ things is given by,
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}.................\left( 1 \right)$
Also, by the concept of principle of counting, if we are given n numbers from which, we have to find the number of 1, 2, 3, 4 - digit numbers having different digits, then it is found by the formula,
$n\times \left( n-1 \right)\times \left( n-2 \right)\times \left( n-3 \right).................\left( 2 \right)$
In this question, we have to select a ticket from 9999 tickets bearing the numbers 0001, 0002, ……, 9999.
Using the formula $\left( 1 \right)$, the number of ways in which we can select 1 ticket from 9999 tickets can be found by substituting n=9999 and r=1 is equal to,
$\begin{align}
& {}^{9999}{{C}_{1}}=\dfrac{9999!}{1!\left( 9999-1 \right)!} \\
& \Rightarrow {}^{9999}{{C}_{1}}=\dfrac{9999\times \left( 9998 \right)!}{\left( 9998 \right)!} \\
& \Rightarrow {}^{9999}{{C}_{1}}=9999.............\left( 3 \right) \\
\end{align}$
Since the tickets are bearing the numbers 0000 to 9999, the number of digits possible in these numbers are equal to 10. Substituting n=10 in formula $\left( 2 \right)$, the number of ways in which a ticket bearing a number with different digits can be drawn from these 9999 tickets is equal to,
\[\begin{align}
& 10\times \left( 10-1 \right)\times \left( 10-2 \right)\times \left( 10-3 \right) \\
& \Rightarrow 10\times 9\times 8\times 7 \\
& \Rightarrow 5040..........\left( 4 \right) \\
\end{align}\]
We know that probability is the ratio of the number of favorable outcomes and the number of outcomes possible. So, using the obtained numbers $\left( 1 \right)$ and $\left( 2 \right)$, we get,
Probability = $\dfrac{5040}{9999}$
Hence, the answer is option (a).
Note: The number of favorable outcomes i.e. the number of ways in which we can select a ticket having a number on it with all different digits can be also found by the formula ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. Here, n is the number of possible digits in the number and r is the number of digits in a number. For this question, n=10 and r=4.
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
From the number of permutation and combination, the number of ways in which we can select ‘r’ things from total of ‘n’ things is given by,
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}.................\left( 1 \right)$
Also, by the concept of principle of counting, if we are given n numbers from which, we have to find the number of 1, 2, 3, 4 - digit numbers having different digits, then it is found by the formula,
$n\times \left( n-1 \right)\times \left( n-2 \right)\times \left( n-3 \right).................\left( 2 \right)$
In this question, we have to select a ticket from 9999 tickets bearing the numbers 0001, 0002, ……, 9999.
Using the formula $\left( 1 \right)$, the number of ways in which we can select 1 ticket from 9999 tickets can be found by substituting n=9999 and r=1 is equal to,
$\begin{align}
& {}^{9999}{{C}_{1}}=\dfrac{9999!}{1!\left( 9999-1 \right)!} \\
& \Rightarrow {}^{9999}{{C}_{1}}=\dfrac{9999\times \left( 9998 \right)!}{\left( 9998 \right)!} \\
& \Rightarrow {}^{9999}{{C}_{1}}=9999.............\left( 3 \right) \\
\end{align}$
Since the tickets are bearing the numbers 0000 to 9999, the number of digits possible in these numbers are equal to 10. Substituting n=10 in formula $\left( 2 \right)$, the number of ways in which a ticket bearing a number with different digits can be drawn from these 9999 tickets is equal to,
\[\begin{align}
& 10\times \left( 10-1 \right)\times \left( 10-2 \right)\times \left( 10-3 \right) \\
& \Rightarrow 10\times 9\times 8\times 7 \\
& \Rightarrow 5040..........\left( 4 \right) \\
\end{align}\]
We know that probability is the ratio of the number of favorable outcomes and the number of outcomes possible. So, using the obtained numbers $\left( 1 \right)$ and $\left( 2 \right)$, we get,
Probability = $\dfrac{5040}{9999}$
Hence, the answer is option (a).
Note: The number of favorable outcomes i.e. the number of ways in which we can select a ticket having a number on it with all different digits can be also found by the formula ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$. Here, n is the number of possible digits in the number and r is the number of digits in a number. For this question, n=10 and r=4.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
