
There are 3 white, 4 blue and 1 red flowers, All of them are taken out one by one and arranged in a row in the order. How many different arrangements are possible (flowers of the same colours are similar)?.
Answer
584.1k+ views
Hint: Find the total number of arrangement of flowers. In this question it is given that 3 white flowers and 4 blue flowers are similar so we need to divide the total number of arrangements by 3! And factorial 4!. Use combinations formula \[\dfrac{{n!}}{{p!q!r!}}\]
Complete step-by-step answer:
Given total number of white flowers is 3
Total number of blue flowers is 4
Total number of red flower is 1
We need to find the total number of arrangements in a row such that All of them are taken out one by one and arranged in a row in the order.
The total number of ways of arranging these flowers will be 8!
However, there are 3 white flowers, 4 red flowers and 1 blue flower.
The total number of ways of arranging 3 white flowers will be 3!
The total number of ways of arranging 4 blue flowers will be 4!
Since there is a repetition of 3 and 4, the answer will be:
We have,
Total no. of different arrangements \[\dfrac{{8!}}{{3!4!}}\]
\[ = 8 \times 7 \times 5 = 280\]arrangements
Note:1.the number of arrangement of a total of n objects, out of which ‘p’ are of one type, q of second type are alike, and r of a third kind are same, then such a computation is done by \[\dfrac{{n!}}{{p!q!r!}}\]
2. Number of ways in which n things of which r alike and the rest different can be arranged in a circle distinguishing between clockwise and anticlockwise arrangement, is $\dfrac{{\left( {n - 1} \right)!}}{r}$
Complete step-by-step answer:
Given total number of white flowers is 3
Total number of blue flowers is 4
Total number of red flower is 1
We need to find the total number of arrangements in a row such that All of them are taken out one by one and arranged in a row in the order.
The total number of ways of arranging these flowers will be 8!
However, there are 3 white flowers, 4 red flowers and 1 blue flower.
The total number of ways of arranging 3 white flowers will be 3!
The total number of ways of arranging 4 blue flowers will be 4!
Since there is a repetition of 3 and 4, the answer will be:
We have,
Total no. of different arrangements \[\dfrac{{8!}}{{3!4!}}\]
\[ = 8 \times 7 \times 5 = 280\]arrangements
Note:1.the number of arrangement of a total of n objects, out of which ‘p’ are of one type, q of second type are alike, and r of a third kind are same, then such a computation is done by \[\dfrac{{n!}}{{p!q!r!}}\]
2. Number of ways in which n things of which r alike and the rest different can be arranged in a circle distinguishing between clockwise and anticlockwise arrangement, is $\dfrac{{\left( {n - 1} \right)!}}{r}$
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

