There are $3$ candidates and $5$ voters.
(a) In how many ways can the votes be given?
(b) If the $3$ candidates are among the $5$ voters and they vote for themselves only. Then, how many ways of giving votes are possible?
Answer
280.5k+ views
Hint: The question revolves around the concepts of permutations and combinations. We are given the number of candidates and voters in an election and we are required to find the number of possible ways of giving votes. According to the fundamental theorem of counting, if there are p ways of doing one thing and q ways of doing another thing, then there are $p \times q$ ways of doing both the things. So, we find out the number of options with each voter and then multiply the number of options with each voter so as to get the required answer.
Complete step-by-step solution:
So, we are given the number of voters as $5$.
Also, the number of candidates in the election is $3$.
(a) Now, voters have to choose a candidate out of these three candidates in the elections.
So, each voter has three options to choose a candidate in the elections.
So, the number of ways in which a voter can choose a candidate in the elections is $3$.
Now, using the fundamental principle of counting, we get
Number of ways in which the votes can be given by the five voters as $3 \times 3 \times 3 \times 3 \times 3$
$ = {3^5} = 243$
Hence, the number of ways in which the votes can be given are $243$.
(b) Now, consider the second situation where the $3$ candidates are among the $5$ voters and they vote for themselves only.
Since the $3$ candidates are among the $5$ voters and they only vote for themselves. So, there is one way for the candidates to choose themselves in the elections.
Now, we will calculate the number of possibilities with the $2$ voters that are not candidates themselves. So, they can vote for any of the $3$ candidates. Hence, they have $3$ options to choose from.
So, the number of ways in which a voter that is not a candidate can choose a candidate in the elections is $3$.
Number of ways in which the votes can be given by the five voters as $1 \times 1 \times 1 \times 3 \times 3$
$ = {3^2} = 9$
Hence, there are $9$ ways of giving votes if the $3$ candidates are among the $5$ voters and they vote for themselves only.
Note: Combination means choosing elements is only that matters, whereas permutation is an ordered combination. The formula used to find combination is \[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\] . Permutation is a method used to calculate the total outcome of a situation where order is important, the formula used to find permutation is and \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\].
Complete step-by-step solution:
So, we are given the number of voters as $5$.
Also, the number of candidates in the election is $3$.
(a) Now, voters have to choose a candidate out of these three candidates in the elections.
So, each voter has three options to choose a candidate in the elections.
So, the number of ways in which a voter can choose a candidate in the elections is $3$.
Now, using the fundamental principle of counting, we get
Number of ways in which the votes can be given by the five voters as $3 \times 3 \times 3 \times 3 \times 3$
$ = {3^5} = 243$
Hence, the number of ways in which the votes can be given are $243$.
(b) Now, consider the second situation where the $3$ candidates are among the $5$ voters and they vote for themselves only.
Since the $3$ candidates are among the $5$ voters and they only vote for themselves. So, there is one way for the candidates to choose themselves in the elections.
Now, we will calculate the number of possibilities with the $2$ voters that are not candidates themselves. So, they can vote for any of the $3$ candidates. Hence, they have $3$ options to choose from.
So, the number of ways in which a voter that is not a candidate can choose a candidate in the elections is $3$.
Number of ways in which the votes can be given by the five voters as $1 \times 1 \times 1 \times 3 \times 3$
$ = {3^2} = 9$
Hence, there are $9$ ways of giving votes if the $3$ candidates are among the $5$ voters and they vote for themselves only.
Note: Combination means choosing elements is only that matters, whereas permutation is an ordered combination. The formula used to find combination is \[{}^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}\] . Permutation is a method used to calculate the total outcome of a situation where order is important, the formula used to find permutation is and \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\].
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE
