
The work done by the force \[\overset{\to }{\mathop{F}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] acting on a particle is displaced from A (3, 3, 3) to the point B (4, 4, 4) is,
(a) 2 units
(b) 3 units
(c) 4 units
(d) 7 units
Answer
608.1k+ views
Hint: First calculate the distance by using the formula \[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\] and then use the formula \[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{AB}}\,\] to get the value of work done. Use the formula \[\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{q}}\,=\left( \overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\, \right).\left( \overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\, \right)=ad+be+cf\] to calculate the dot product.
Complete step-by-step answer:
To find out the work done by the given force we should write the given equation first, therefore,
\[\overset{\to }{\mathop{F}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] ……………………………………….. (1)
Also, A (3, 3, 3) and B (4, 4, 4) ……………………………………… (2)
As we have given the two points A and B therefore it’s position vector will become,
\[\overset{\to }{\mathop{a}}\,=3\overset{\to }{\mathop{i}}\,+3\overset{\to }{\mathop{j}}\,+3\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{b}}\,=4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\,\] ……………………………………… (3)
The distance between two points is given by the formula, \[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\] therefore,
\[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\]
If we put the values of equation (3) in the above formula we will get,
\[\therefore \overset{\to }{\mathop{AB}}\,=\left( 4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\, \right)-\left( 3\overset{\to }{\mathop{i}}\,+3\overset{\to }{\mathop{j}}\,+3\overset{\to }{\mathop{k}}\, \right)\]
Further simplification in the above equation will give,
\[\therefore \overset{\to }{\mathop{AB}}\,=4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\,-3\overset{\to }{\mathop{i}}\,-3\overset{\to }{\mathop{j}}\,-3\overset{\to }{\mathop{k}}\,\]
By rearranging the above equation we will get,
\[\therefore \overset{\to }{\mathop{AB}}\,=\left( 4\overset{\to }{\mathop{i}}\,-3\overset{\to }{\mathop{i}}\, \right)+\left( 4\overset{\to }{\mathop{j}}\,-3\overset{\to }{\mathop{j}}\, \right)+\left( 4\overset{\to }{\mathop{k}}\,-3\overset{\to }{\mathop{k}}\, \right)\]
\[\therefore \overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] ………………………………………………………. (4)
To proceed further in the solution we should know the formula of work done given below,
Formula:
\[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{d}}\,\] Where \[\overset{\to }{\mathop{d}}\,\] is the distance covered which is \[\overset{\to }{\mathop{AB}}\,\] in this case,
Therefore the work by the given force is given by,
\[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{AB}}\,\]
If we put the values of equation (1) and equation (4) in the above equation we will get,
\[W=\left( \overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\, \right).\left( \overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\, \right)\]
Now to proceed further in the solution we should know the the formula given below,
Formula:
If \[\overset{\to }{\mathop{p}}\,=\overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\,\] and \[\overset{\to }{\mathop{q}}\,=\overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\,\] then their dot product is given by, \[\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{q}}\,=\left( \overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\, \right).\left( \overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\, \right)=ad+be+cf\].
By using the above formula in ‘W’ we will get,
\[\therefore W=1\times 1+1\times 1+1\times 1\]
\[\therefore W=1+1+1\]
Therefore, W = 3 units.
Therefore the work done by a given force from point A to point B is equal to 3 units.
Therefore the correct answer is option (b).
Note: You can also solve this problem by calculating \[\left| \overset{\to }{\mathop{F}}\, \right|\] and distance AB by using distance formula and then using the formula \[W=\left| \overset{\to }{\mathop{F}}\, \right|.AB\] to get the quick answer.
Complete step-by-step answer:
To find out the work done by the given force we should write the given equation first, therefore,
\[\overset{\to }{\mathop{F}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] ……………………………………….. (1)
Also, A (3, 3, 3) and B (4, 4, 4) ……………………………………… (2)
As we have given the two points A and B therefore it’s position vector will become,
\[\overset{\to }{\mathop{a}}\,=3\overset{\to }{\mathop{i}}\,+3\overset{\to }{\mathop{j}}\,+3\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{b}}\,=4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\,\] ……………………………………… (3)
The distance between two points is given by the formula, \[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\] therefore,
\[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\]
If we put the values of equation (3) in the above formula we will get,
\[\therefore \overset{\to }{\mathop{AB}}\,=\left( 4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\, \right)-\left( 3\overset{\to }{\mathop{i}}\,+3\overset{\to }{\mathop{j}}\,+3\overset{\to }{\mathop{k}}\, \right)\]
Further simplification in the above equation will give,
\[\therefore \overset{\to }{\mathop{AB}}\,=4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\,-3\overset{\to }{\mathop{i}}\,-3\overset{\to }{\mathop{j}}\,-3\overset{\to }{\mathop{k}}\,\]
By rearranging the above equation we will get,
\[\therefore \overset{\to }{\mathop{AB}}\,=\left( 4\overset{\to }{\mathop{i}}\,-3\overset{\to }{\mathop{i}}\, \right)+\left( 4\overset{\to }{\mathop{j}}\,-3\overset{\to }{\mathop{j}}\, \right)+\left( 4\overset{\to }{\mathop{k}}\,-3\overset{\to }{\mathop{k}}\, \right)\]
\[\therefore \overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] ………………………………………………………. (4)
To proceed further in the solution we should know the formula of work done given below,
Formula:
\[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{d}}\,\] Where \[\overset{\to }{\mathop{d}}\,\] is the distance covered which is \[\overset{\to }{\mathop{AB}}\,\] in this case,
Therefore the work by the given force is given by,
\[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{AB}}\,\]
If we put the values of equation (1) and equation (4) in the above equation we will get,
\[W=\left( \overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\, \right).\left( \overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\, \right)\]
Now to proceed further in the solution we should know the the formula given below,
Formula:
If \[\overset{\to }{\mathop{p}}\,=\overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\,\] and \[\overset{\to }{\mathop{q}}\,=\overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\,\] then their dot product is given by, \[\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{q}}\,=\left( \overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\, \right).\left( \overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\, \right)=ad+be+cf\].
By using the above formula in ‘W’ we will get,
\[\therefore W=1\times 1+1\times 1+1\times 1\]
\[\therefore W=1+1+1\]
Therefore, W = 3 units.
Therefore the work done by a given force from point A to point B is equal to 3 units.
Therefore the correct answer is option (b).
Note: You can also solve this problem by calculating \[\left| \overset{\to }{\mathop{F}}\, \right|\] and distance AB by using distance formula and then using the formula \[W=\left| \overset{\to }{\mathop{F}}\, \right|.AB\] to get the quick answer.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

