
The work done by the force \[\overset{\to }{\mathop{F}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] acting on a particle is displaced from A (3, 3, 3) to the point B (4, 4, 4) is,
(a) 2 units
(b) 3 units
(c) 4 units
(d) 7 units
Answer
616.5k+ views
Hint: First calculate the distance by using the formula \[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\] and then use the formula \[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{AB}}\,\] to get the value of work done. Use the formula \[\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{q}}\,=\left( \overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\, \right).\left( \overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\, \right)=ad+be+cf\] to calculate the dot product.
Complete step-by-step answer:
To find out the work done by the given force we should write the given equation first, therefore,
\[\overset{\to }{\mathop{F}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] ……………………………………….. (1)
Also, A (3, 3, 3) and B (4, 4, 4) ……………………………………… (2)
As we have given the two points A and B therefore it’s position vector will become,
\[\overset{\to }{\mathop{a}}\,=3\overset{\to }{\mathop{i}}\,+3\overset{\to }{\mathop{j}}\,+3\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{b}}\,=4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\,\] ……………………………………… (3)
The distance between two points is given by the formula, \[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\] therefore,
\[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\]
If we put the values of equation (3) in the above formula we will get,
\[\therefore \overset{\to }{\mathop{AB}}\,=\left( 4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\, \right)-\left( 3\overset{\to }{\mathop{i}}\,+3\overset{\to }{\mathop{j}}\,+3\overset{\to }{\mathop{k}}\, \right)\]
Further simplification in the above equation will give,
\[\therefore \overset{\to }{\mathop{AB}}\,=4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\,-3\overset{\to }{\mathop{i}}\,-3\overset{\to }{\mathop{j}}\,-3\overset{\to }{\mathop{k}}\,\]
By rearranging the above equation we will get,
\[\therefore \overset{\to }{\mathop{AB}}\,=\left( 4\overset{\to }{\mathop{i}}\,-3\overset{\to }{\mathop{i}}\, \right)+\left( 4\overset{\to }{\mathop{j}}\,-3\overset{\to }{\mathop{j}}\, \right)+\left( 4\overset{\to }{\mathop{k}}\,-3\overset{\to }{\mathop{k}}\, \right)\]
\[\therefore \overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] ………………………………………………………. (4)
To proceed further in the solution we should know the formula of work done given below,
Formula:
\[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{d}}\,\] Where \[\overset{\to }{\mathop{d}}\,\] is the distance covered which is \[\overset{\to }{\mathop{AB}}\,\] in this case,
Therefore the work by the given force is given by,
\[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{AB}}\,\]
If we put the values of equation (1) and equation (4) in the above equation we will get,
\[W=\left( \overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\, \right).\left( \overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\, \right)\]
Now to proceed further in the solution we should know the the formula given below,
Formula:
If \[\overset{\to }{\mathop{p}}\,=\overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\,\] and \[\overset{\to }{\mathop{q}}\,=\overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\,\] then their dot product is given by, \[\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{q}}\,=\left( \overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\, \right).\left( \overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\, \right)=ad+be+cf\].
By using the above formula in ‘W’ we will get,
\[\therefore W=1\times 1+1\times 1+1\times 1\]
\[\therefore W=1+1+1\]
Therefore, W = 3 units.
Therefore the work done by a given force from point A to point B is equal to 3 units.
Therefore the correct answer is option (b).
Note: You can also solve this problem by calculating \[\left| \overset{\to }{\mathop{F}}\, \right|\] and distance AB by using distance formula and then using the formula \[W=\left| \overset{\to }{\mathop{F}}\, \right|.AB\] to get the quick answer.
Complete step-by-step answer:
To find out the work done by the given force we should write the given equation first, therefore,
\[\overset{\to }{\mathop{F}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] ……………………………………….. (1)
Also, A (3, 3, 3) and B (4, 4, 4) ……………………………………… (2)
As we have given the two points A and B therefore it’s position vector will become,
\[\overset{\to }{\mathop{a}}\,=3\overset{\to }{\mathop{i}}\,+3\overset{\to }{\mathop{j}}\,+3\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{b}}\,=4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\,\] ……………………………………… (3)
The distance between two points is given by the formula, \[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\] therefore,
\[\overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{b}}\,-\overset{\to }{\mathop{a}}\,\]
If we put the values of equation (3) in the above formula we will get,
\[\therefore \overset{\to }{\mathop{AB}}\,=\left( 4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\, \right)-\left( 3\overset{\to }{\mathop{i}}\,+3\overset{\to }{\mathop{j}}\,+3\overset{\to }{\mathop{k}}\, \right)\]
Further simplification in the above equation will give,
\[\therefore \overset{\to }{\mathop{AB}}\,=4\overset{\to }{\mathop{i}}\,+4\overset{\to }{\mathop{j}}\,+4\overset{\to }{\mathop{k}}\,-3\overset{\to }{\mathop{i}}\,-3\overset{\to }{\mathop{j}}\,-3\overset{\to }{\mathop{k}}\,\]
By rearranging the above equation we will get,
\[\therefore \overset{\to }{\mathop{AB}}\,=\left( 4\overset{\to }{\mathop{i}}\,-3\overset{\to }{\mathop{i}}\, \right)+\left( 4\overset{\to }{\mathop{j}}\,-3\overset{\to }{\mathop{j}}\, \right)+\left( 4\overset{\to }{\mathop{k}}\,-3\overset{\to }{\mathop{k}}\, \right)\]
\[\therefore \overset{\to }{\mathop{AB}}\,=\overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\,\] ………………………………………………………. (4)
To proceed further in the solution we should know the formula of work done given below,
Formula:
\[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{d}}\,\] Where \[\overset{\to }{\mathop{d}}\,\] is the distance covered which is \[\overset{\to }{\mathop{AB}}\,\] in this case,
Therefore the work by the given force is given by,
\[W=\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{AB}}\,\]
If we put the values of equation (1) and equation (4) in the above equation we will get,
\[W=\left( \overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\, \right).\left( \overset{\to }{\mathop{i}}\,+\overset{\to }{\mathop{j}}\,+\overset{\to }{\mathop{k}}\, \right)\]
Now to proceed further in the solution we should know the the formula given below,
Formula:
If \[\overset{\to }{\mathop{p}}\,=\overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\,\] and \[\overset{\to }{\mathop{q}}\,=\overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\,\] then their dot product is given by, \[\overset{\to }{\mathop{p}}\,.\overset{\to }{\mathop{q}}\,=\left( \overset{\to }{\mathop{ai}}\,+\overset{\to }{\mathop{bj}}\,+\overset{\to }{\mathop{ck}}\, \right).\left( \overset{\to }{\mathop{di}}\,+\overset{\to }{\mathop{ej}}\,+\overset{\to }{\mathop{fk}}\, \right)=ad+be+cf\].
By using the above formula in ‘W’ we will get,
\[\therefore W=1\times 1+1\times 1+1\times 1\]
\[\therefore W=1+1+1\]
Therefore, W = 3 units.
Therefore the work done by a given force from point A to point B is equal to 3 units.
Therefore the correct answer is option (b).
Note: You can also solve this problem by calculating \[\left| \overset{\to }{\mathop{F}}\, \right|\] and distance AB by using distance formula and then using the formula \[W=\left| \overset{\to }{\mathop{F}}\, \right|.AB\] to get the quick answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

