Answer
Verified
427.2k+ views
Hint:The Wien's displacement law is related to thermodynamics. Think of that chapter and recall the associated terms. It has got the unit $mK$ or meter Kelvin. Now you can relate to the quantities given and find out by doing the perfect operation between the quantities and checking the units.
Complete step by step answer:
Wien's displacement law states that the wavelength corresponding to maximum energy is inversely proportional to the temperature of the body in Kelvin. It can also be said that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature.
$
\Rightarrow \lambda \propto \dfrac{1}{T} \\
\Rightarrow \lambda = \dfrac{k}{T} \\
\therefore\lambda T = k $
Here the value of $k$ is given by Wien's displacement constant and is denoted by $b$.
The value of Wien's displacement constant is $b = 2.89 \times {10^{ - 3}}mK$
This has been given by Wilhelm Wein in 1983. Practically it means that hot objects will emit blue light more than cold objects. Thus, Wien's displacement law is a relation between the wavelength corresponding to maximum energy and temperature in Kelvin of the radiation emitted with the temperature of the body.
Hence option (A) is correct.
Note: Wien's displacement law has nothing to do with displacement as the name suggests. A most common mistake done is that students think that the wavelength mentioned is the maximum wavelength, which is wrong. It is the wavelength corresponding to the maximum energy.
Complete step by step answer:
Wien's displacement law states that the wavelength corresponding to maximum energy is inversely proportional to the temperature of the body in Kelvin. It can also be said that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature.
$
\Rightarrow \lambda \propto \dfrac{1}{T} \\
\Rightarrow \lambda = \dfrac{k}{T} \\
\therefore\lambda T = k $
Here the value of $k$ is given by Wien's displacement constant and is denoted by $b$.
The value of Wien's displacement constant is $b = 2.89 \times {10^{ - 3}}mK$
This has been given by Wilhelm Wein in 1983. Practically it means that hot objects will emit blue light more than cold objects. Thus, Wien's displacement law is a relation between the wavelength corresponding to maximum energy and temperature in Kelvin of the radiation emitted with the temperature of the body.
Hence option (A) is correct.
Note: Wien's displacement law has nothing to do with displacement as the name suggests. A most common mistake done is that students think that the wavelength mentioned is the maximum wavelength, which is wrong. It is the wavelength corresponding to the maximum energy.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Casparian strips are present in of the root A Epiblema class 12 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE