
The velocity vector $v$ and displacement $x$ of a particle executing SHM are related as $\dfrac{vdv}{dx}=-\omega^{2}x$, with initial condition $V=v_{0}$ at $x=0$. The velocity $v$, when displacement is $x$ is?
\[\begin{align}
& A.v=\sqrt{v_{0}^{2}+{{\omega }^{2}}{{x}^{2}}} \\
& B.v=\sqrt{v_{0}^{2}-{{\omega }^{2}}{{x}^{2}}} \\
& C.v=\sqrt[3]{v_{0}^{3}+{{\omega }^{3}}{{x}^{3}}} \\
& D.v={{v}_{0}}-{{({{\omega }^{3}}{{x}^{3}}{{e}^{{{x}^{3}}}})}^{\dfrac{1}{3}}} \\
\end{align}\]
Answer
558.3k+ views
Hint: We know that the general equation of the SHM displacement of particle is given as, $x=A\sin(\omega t)$, here, they have given a relationship between the velocity vector $v$ and displacement $x$ of a particle, using this equation, we can find the velocity vector $v$ at some displacement is $x$, by integrating the given equation.
Formula: $v=\dfrac{dx}{dt}$
Complete answer:
We know that the SHM or simple harmonic motion is the motion caused by the restoring force; it is directly proportional to the displacement of the object from its mean position. And is always directed towards the mean.
Given that $\dfrac{vdv}{dx}=-\omega^{2}x$. But we know that the velocity of the particle, whose displacement is known is defined as the rate of change of displacement with respect to time, and is mathematically given as $v=\dfrac{dx}{dt}$.
Now to find the velocity $v$ at some displacement is $x$, using the definition of velocity, we need to rearrange and integrate the given equations using appropriate limits. Rearranging the equation, we get,
$vdv=-\omega^{2}xdx$
Here the limit of velocity varies from $v_{0}$ to $v$ and similarly the limit of the displacement $x$ varies from $x_{0}$ to $x$. Mathematically, it can be represented as,
$\implies\int_{v_{0}}^{v}vdv=\int_{x_{0}}^{x}-\omega^{2}xdx$
On integration and applying the limits, we get the following equations,
\[\begin{align}
& \Rightarrow \left. \dfrac{{{v}^{2}}}{2} \right|_{{{v}_{0}}}^{v}=-{{\omega }^{2}}\left. \dfrac{{{x}^{2}}}{2} \right|_{0}^{x} \\
& \Rightarrow ({{v}^{2}}-v_{0}^{2})=-{{\omega }^{2}}{{x}^{2}} \\
& \Rightarrow {{v}^{2}}=-{{\omega }^{2}}{{x}^{2}}+v_{0}^{2} \\
& \therefore v=\sqrt{v_{0}^{2}-{{\omega }^{2}}{{x}^{2}}} \\
\end{align}\]
Thus, the correct answer is option \[B.v=\sqrt{v_{0}^{2}-{{\omega }^{2}}{{x}^{2}}}\]
Note:
Remember SHM motions are sinusoidal in nature. Assume, the particle is at mean when, $t=0$, $v=v_{0}$ and $x=0$. This makes the further steps easier. Since this question involves more of mathematics than physics, it is important to know some basic integration, to solve this sum. Also note that this is a very easy sum, provided one knows integration.
Formula: $v=\dfrac{dx}{dt}$
Complete answer:
We know that the SHM or simple harmonic motion is the motion caused by the restoring force; it is directly proportional to the displacement of the object from its mean position. And is always directed towards the mean.
Given that $\dfrac{vdv}{dx}=-\omega^{2}x$. But we know that the velocity of the particle, whose displacement is known is defined as the rate of change of displacement with respect to time, and is mathematically given as $v=\dfrac{dx}{dt}$.
Now to find the velocity $v$ at some displacement is $x$, using the definition of velocity, we need to rearrange and integrate the given equations using appropriate limits. Rearranging the equation, we get,
$vdv=-\omega^{2}xdx$
Here the limit of velocity varies from $v_{0}$ to $v$ and similarly the limit of the displacement $x$ varies from $x_{0}$ to $x$. Mathematically, it can be represented as,
$\implies\int_{v_{0}}^{v}vdv=\int_{x_{0}}^{x}-\omega^{2}xdx$
On integration and applying the limits, we get the following equations,
\[\begin{align}
& \Rightarrow \left. \dfrac{{{v}^{2}}}{2} \right|_{{{v}_{0}}}^{v}=-{{\omega }^{2}}\left. \dfrac{{{x}^{2}}}{2} \right|_{0}^{x} \\
& \Rightarrow ({{v}^{2}}-v_{0}^{2})=-{{\omega }^{2}}{{x}^{2}} \\
& \Rightarrow {{v}^{2}}=-{{\omega }^{2}}{{x}^{2}}+v_{0}^{2} \\
& \therefore v=\sqrt{v_{0}^{2}-{{\omega }^{2}}{{x}^{2}}} \\
\end{align}\]
Thus, the correct answer is option \[B.v=\sqrt{v_{0}^{2}-{{\omega }^{2}}{{x}^{2}}}\]
Note:
Remember SHM motions are sinusoidal in nature. Assume, the particle is at mean when, $t=0$, $v=v_{0}$ and $x=0$. This makes the further steps easier. Since this question involves more of mathematics than physics, it is important to know some basic integration, to solve this sum. Also note that this is a very easy sum, provided one knows integration.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

Which hormone is responsible for fruit ripening a Ethylene class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

Write a short note on the Chipko movement class 11 biology CBSE

What are the Characteristics of Sound Waves?

