
The vector $\overrightarrow C $ is directed along the internal bisector of the angle between vectors $\overrightarrow A = \hat i - 4\hat j - 4\hat k$ and $\overrightarrow B = - 2\hat i - \hat j + 2\hat k$. Then $\overrightarrow C $=?
Answer
511.8k+ views
Hint: We can find a vector that bisects the angle between two given vectors by adding their unit vectors. When we add 2 vectors with the same magnitude, the resultant vectors will be in the direction of its internal angle bisector.
Complete step by step solution: We have $\overrightarrow A = \hat i - 4\hat j - 4\hat k$ . We can get its unit vector as follows
$\hat A = \dfrac{{\vec A}}{{\left| A \right|}}$
As, $\left| A \right| = \sqrt {{x^2} + {y^2} + {z^2}} $, on substituting values we get,
$\hat A = \dfrac{{\hat i - 4\hat j - 4\hat k}}{{\sqrt {{1^2} + {4^2} + {4^2}} }}$
On simplification we get,
$
\hat A = \dfrac{{\hat i - 4\hat j - 4\hat k}}{{\sqrt {33} }} \\
\hat A = \dfrac{1}{{\sqrt {33} }}\hat i - \dfrac{4}{{\sqrt {33} }}\hat j - \dfrac{4}{{\sqrt {33} }}\hat k \\
$
Similarly, we can also find the unit vector of $\overrightarrow B = - 2\hat i - \hat j + 2\hat k$ as follows
$\hat B = \dfrac{{\vec B}}{{\left| B \right|}}$
As, $\left| A \right| = \sqrt {{x^2} + {y^2} + {z^2}} $, on substituting values we get,
$\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{{\sqrt {{2^2} + {1^2} + {2^2}} }}$
On simplification we get,
$
\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{{\sqrt 9 }} \\
\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{3} \\
\hat B = \dfrac{{ - 2}}{3}\hat i - \dfrac{1}{3}\hat j + \dfrac{2}{3}\hat k \\
$
Now we have 2 vectors with magnitude 1. By adding these vectors, we will get a vector in the direction on its internal angle bisector.
Thus $\overrightarrow C = {\text{ }}\hat A + \hat B$
$
\overrightarrow C = {\text{ }}\left( {\dfrac{1}{{\sqrt {33} }}\hat i - \dfrac{4}{{\sqrt {33} }}\hat j - \dfrac{4}{{\sqrt {33} }}\hat k} \right) + \left( {\dfrac{{ - 2}}{3}\hat i - \dfrac{1}{3}\hat j + \dfrac{2}{3}\hat k} \right) \\
= \dfrac{{3 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat i - {\text{ }}\dfrac{{12 + \sqrt {33} }}{{3\sqrt {33} }}\hat j - \dfrac{{12 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat k \\
$
Thus, the required vector is $\vec C = \dfrac{{3 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat i - {\text{ }}\dfrac{{12 + \sqrt {33} }}{{3\sqrt {33} }}\hat j - \dfrac{{12 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat k$
Note: The method used here for finding the vector in the direction of the internal angle bisector can be derived from the parallelogram law of vector addition. If the two vectors to be added are equal in magnitude, the parallelogram will become a rhombus. The diagonal of a rhombus is the angle bisector. Thus, we get the required vector.
Complete step by step solution: We have $\overrightarrow A = \hat i - 4\hat j - 4\hat k$ . We can get its unit vector as follows
$\hat A = \dfrac{{\vec A}}{{\left| A \right|}}$
As, $\left| A \right| = \sqrt {{x^2} + {y^2} + {z^2}} $, on substituting values we get,
$\hat A = \dfrac{{\hat i - 4\hat j - 4\hat k}}{{\sqrt {{1^2} + {4^2} + {4^2}} }}$
On simplification we get,
$
\hat A = \dfrac{{\hat i - 4\hat j - 4\hat k}}{{\sqrt {33} }} \\
\hat A = \dfrac{1}{{\sqrt {33} }}\hat i - \dfrac{4}{{\sqrt {33} }}\hat j - \dfrac{4}{{\sqrt {33} }}\hat k \\
$
Similarly, we can also find the unit vector of $\overrightarrow B = - 2\hat i - \hat j + 2\hat k$ as follows
$\hat B = \dfrac{{\vec B}}{{\left| B \right|}}$
As, $\left| A \right| = \sqrt {{x^2} + {y^2} + {z^2}} $, on substituting values we get,
$\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{{\sqrt {{2^2} + {1^2} + {2^2}} }}$
On simplification we get,
$
\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{{\sqrt 9 }} \\
\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{3} \\
\hat B = \dfrac{{ - 2}}{3}\hat i - \dfrac{1}{3}\hat j + \dfrac{2}{3}\hat k \\
$
Now we have 2 vectors with magnitude 1. By adding these vectors, we will get a vector in the direction on its internal angle bisector.
Thus $\overrightarrow C = {\text{ }}\hat A + \hat B$
$
\overrightarrow C = {\text{ }}\left( {\dfrac{1}{{\sqrt {33} }}\hat i - \dfrac{4}{{\sqrt {33} }}\hat j - \dfrac{4}{{\sqrt {33} }}\hat k} \right) + \left( {\dfrac{{ - 2}}{3}\hat i - \dfrac{1}{3}\hat j + \dfrac{2}{3}\hat k} \right) \\
= \dfrac{{3 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat i - {\text{ }}\dfrac{{12 + \sqrt {33} }}{{3\sqrt {33} }}\hat j - \dfrac{{12 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat k \\
$
Thus, the required vector is $\vec C = \dfrac{{3 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat i - {\text{ }}\dfrac{{12 + \sqrt {33} }}{{3\sqrt {33} }}\hat j - \dfrac{{12 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat k$
Note: The method used here for finding the vector in the direction of the internal angle bisector can be derived from the parallelogram law of vector addition. If the two vectors to be added are equal in magnitude, the parallelogram will become a rhombus. The diagonal of a rhombus is the angle bisector. Thus, we get the required vector.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE
