
The vector $\overrightarrow C $ is directed along the internal bisector of the angle between vectors $\overrightarrow A = \hat i - 4\hat j - 4\hat k$ and $\overrightarrow B = - 2\hat i - \hat j + 2\hat k$. Then $\overrightarrow C $=?
Answer
576.9k+ views
Hint: We can find a vector that bisects the angle between two given vectors by adding their unit vectors. When we add 2 vectors with the same magnitude, the resultant vectors will be in the direction of its internal angle bisector.
Complete step by step solution: We have $\overrightarrow A = \hat i - 4\hat j - 4\hat k$ . We can get its unit vector as follows
$\hat A = \dfrac{{\vec A}}{{\left| A \right|}}$
As, $\left| A \right| = \sqrt {{x^2} + {y^2} + {z^2}} $, on substituting values we get,
$\hat A = \dfrac{{\hat i - 4\hat j - 4\hat k}}{{\sqrt {{1^2} + {4^2} + {4^2}} }}$
On simplification we get,
$
\hat A = \dfrac{{\hat i - 4\hat j - 4\hat k}}{{\sqrt {33} }} \\
\hat A = \dfrac{1}{{\sqrt {33} }}\hat i - \dfrac{4}{{\sqrt {33} }}\hat j - \dfrac{4}{{\sqrt {33} }}\hat k \\
$
Similarly, we can also find the unit vector of $\overrightarrow B = - 2\hat i - \hat j + 2\hat k$ as follows
$\hat B = \dfrac{{\vec B}}{{\left| B \right|}}$
As, $\left| A \right| = \sqrt {{x^2} + {y^2} + {z^2}} $, on substituting values we get,
$\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{{\sqrt {{2^2} + {1^2} + {2^2}} }}$
On simplification we get,
$
\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{{\sqrt 9 }} \\
\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{3} \\
\hat B = \dfrac{{ - 2}}{3}\hat i - \dfrac{1}{3}\hat j + \dfrac{2}{3}\hat k \\
$
Now we have 2 vectors with magnitude 1. By adding these vectors, we will get a vector in the direction on its internal angle bisector.
Thus $\overrightarrow C = {\text{ }}\hat A + \hat B$
$
\overrightarrow C = {\text{ }}\left( {\dfrac{1}{{\sqrt {33} }}\hat i - \dfrac{4}{{\sqrt {33} }}\hat j - \dfrac{4}{{\sqrt {33} }}\hat k} \right) + \left( {\dfrac{{ - 2}}{3}\hat i - \dfrac{1}{3}\hat j + \dfrac{2}{3}\hat k} \right) \\
= \dfrac{{3 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat i - {\text{ }}\dfrac{{12 + \sqrt {33} }}{{3\sqrt {33} }}\hat j - \dfrac{{12 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat k \\
$
Thus, the required vector is $\vec C = \dfrac{{3 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat i - {\text{ }}\dfrac{{12 + \sqrt {33} }}{{3\sqrt {33} }}\hat j - \dfrac{{12 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat k$
Note: The method used here for finding the vector in the direction of the internal angle bisector can be derived from the parallelogram law of vector addition. If the two vectors to be added are equal in magnitude, the parallelogram will become a rhombus. The diagonal of a rhombus is the angle bisector. Thus, we get the required vector.
Complete step by step solution: We have $\overrightarrow A = \hat i - 4\hat j - 4\hat k$ . We can get its unit vector as follows
$\hat A = \dfrac{{\vec A}}{{\left| A \right|}}$
As, $\left| A \right| = \sqrt {{x^2} + {y^2} + {z^2}} $, on substituting values we get,
$\hat A = \dfrac{{\hat i - 4\hat j - 4\hat k}}{{\sqrt {{1^2} + {4^2} + {4^2}} }}$
On simplification we get,
$
\hat A = \dfrac{{\hat i - 4\hat j - 4\hat k}}{{\sqrt {33} }} \\
\hat A = \dfrac{1}{{\sqrt {33} }}\hat i - \dfrac{4}{{\sqrt {33} }}\hat j - \dfrac{4}{{\sqrt {33} }}\hat k \\
$
Similarly, we can also find the unit vector of $\overrightarrow B = - 2\hat i - \hat j + 2\hat k$ as follows
$\hat B = \dfrac{{\vec B}}{{\left| B \right|}}$
As, $\left| A \right| = \sqrt {{x^2} + {y^2} + {z^2}} $, on substituting values we get,
$\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{{\sqrt {{2^2} + {1^2} + {2^2}} }}$
On simplification we get,
$
\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{{\sqrt 9 }} \\
\hat B = \dfrac{{ - 2\hat i - \hat j + 2\hat k}}{3} \\
\hat B = \dfrac{{ - 2}}{3}\hat i - \dfrac{1}{3}\hat j + \dfrac{2}{3}\hat k \\
$
Now we have 2 vectors with magnitude 1. By adding these vectors, we will get a vector in the direction on its internal angle bisector.
Thus $\overrightarrow C = {\text{ }}\hat A + \hat B$
$
\overrightarrow C = {\text{ }}\left( {\dfrac{1}{{\sqrt {33} }}\hat i - \dfrac{4}{{\sqrt {33} }}\hat j - \dfrac{4}{{\sqrt {33} }}\hat k} \right) + \left( {\dfrac{{ - 2}}{3}\hat i - \dfrac{1}{3}\hat j + \dfrac{2}{3}\hat k} \right) \\
= \dfrac{{3 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat i - {\text{ }}\dfrac{{12 + \sqrt {33} }}{{3\sqrt {33} }}\hat j - \dfrac{{12 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat k \\
$
Thus, the required vector is $\vec C = \dfrac{{3 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat i - {\text{ }}\dfrac{{12 + \sqrt {33} }}{{3\sqrt {33} }}\hat j - \dfrac{{12 - 2\sqrt {33} }}{{3\sqrt {33} }}\hat k$
Note: The method used here for finding the vector in the direction of the internal angle bisector can be derived from the parallelogram law of vector addition. If the two vectors to be added are equal in magnitude, the parallelogram will become a rhombus. The diagonal of a rhombus is the angle bisector. Thus, we get the required vector.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

