Answer
Verified
392.4k+ views
Hint: Here we are given two variates \[x\] and \[u\], and a relation between both the vartates is given. We are asked to find the relation between the standard deviations of \[x\] and \[u\]. We do this by using the fact that standard deviation is not dependent upon change of origin, but on change of scale. Using this we can find the relation between \[{\sigma _x}\] and\[{\sigma _u}\].
Complete step-by-step solution:
We have two variates \[x\] and \[u\], and the relation between \[x\] and \[u\] is given as,
\[\begin{gathered}
u = \dfrac{{x - a}}{h} \\
\Rightarrow u = \dfrac{x}{h} - \dfrac{a}{h} \\
\end{gathered} \]
There is a shift of origin of \[a\] and shift of scale of \[h\] for the new variate \[u\] from \[x\].
Since we know that standard deviation is dependent on change of scale but not on change of origin, we get the relation between \[{\sigma _x}\] and \[{\sigma _u}\]as,
\[
\Rightarrow {\sigma _u} = \dfrac{{{\sigma _x}}}{h} \\
\Rightarrow {\sigma _x} = h{\sigma _u} \\
\]
Thus we have got the relation between \[{\sigma _x}\] and \[{\sigma _u}\] as,
\[{\sigma _x} = h{\sigma _u}\]
Note: Whenever we have a change in the origin of any given data, i.e. we increase or decrease each value of a data, there is no effect in the standard deviation of the data, but when there is shift in scale of the data, i.e. all the data is divided or multiplied by any value, the standard deviation is also changed. Standard deviation is the measure of the value by which all the values of the data differ from the mean of the same data.
Complete step-by-step solution:
We have two variates \[x\] and \[u\], and the relation between \[x\] and \[u\] is given as,
\[\begin{gathered}
u = \dfrac{{x - a}}{h} \\
\Rightarrow u = \dfrac{x}{h} - \dfrac{a}{h} \\
\end{gathered} \]
There is a shift of origin of \[a\] and shift of scale of \[h\] for the new variate \[u\] from \[x\].
Since we know that standard deviation is dependent on change of scale but not on change of origin, we get the relation between \[{\sigma _x}\] and \[{\sigma _u}\]as,
\[
\Rightarrow {\sigma _u} = \dfrac{{{\sigma _x}}}{h} \\
\Rightarrow {\sigma _x} = h{\sigma _u} \\
\]
Thus we have got the relation between \[{\sigma _x}\] and \[{\sigma _u}\] as,
\[{\sigma _x} = h{\sigma _u}\]
Note: Whenever we have a change in the origin of any given data, i.e. we increase or decrease each value of a data, there is no effect in the standard deviation of the data, but when there is shift in scale of the data, i.e. all the data is divided or multiplied by any value, the standard deviation is also changed. Standard deviation is the measure of the value by which all the values of the data differ from the mean of the same data.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE