
The vapor pressure of ether (molecular mass=74) is 442 mm Hg at 293 K. If 3g of a compound A are dissolved in 50 g of ether at this temperature, the vapor pressure falls to 426 mm Hg. Calculate the molecular mass of A assuming that the solution of A is very dilute.
A. $121\;{\rm{gmo}}{{\rm{l}}^{ - 1}}$
B. $122\;{\rm{gmo}}{{\rm{l}}^{ - 1}}$
C. $123\;{\rm{gmo}}{{\rm{l}}^{ - 1}}$
D. $124\;{\rm{gmo}}{{\rm{l}}^{ - 1}}$
Answer
510.9k+ views
Hint: We know that colligative properties are the properties which depend on the number of solute particles to the total number of particles in the solution not considering the solute's nature.
Complete answer:
If a solution contains non-volatile solute, the lowering of vapor pressure depends on the sum of mole fraction of different solutes. So, the mathematical equation representing the condition is,
$\dfrac{\Delta p_1}{{p_1}^0}=x_2$
$\dfrac{{p_1}^0- p_1}{{p_1}^0}=x_2$ …… (1)
Where, $\Delta {p_1}$ is lowering of vapor pressure, $p_1^0$ is the vapor pressure of pure solvent, ${p_1}$ of solution and ${x_2}$ is mole fraction of solute.
Now, come to the question. Given that vapor pressure of ether is 442 mm Hg. When a solute A is added to ether, vapor pressure falls to 426 mm Hg. So, $p_1^0 = 442\;{\rm{mm}}\;{\rm{Hg}}$ and ${p_1} = 426\;{\rm{mm}}\;{\rm{Hg}}$
Substitute the value of $p_1^0$ and ${p_1}$ in equation (1).
$\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442}} = {x_A}$ ….. (2)
Now, write the mole fraction part of the above equation. Here, solute A of 3 g is added to 50 g ether. So, mole fraction of the solute A is,
${x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}} + {\rm{Moles}}\;{\rm{of}}\;{\rm{ether}}}}$ …… (3)
As solution of A is dilute, moles of A <<< moles of ether
So, ${\rm{Moles\;of\;A}} + {\rm{ Moles\;of\;ether}} \approx {\rm{Moles\;of\; ether}}$
So, equation (3) becomes,
${x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{ether}}}}$
We know that moles can be calculated by dividing mass by molar mass. So, the above equation becomes,
${x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}{{{\rm{Molecular}}\,{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}}}$
Now, we substitute ${x_A}$ in equation (2).
$\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442\;{\rm{mm}}\;{\rm{Hg}}}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}{{{\rm{Molecular}}\,{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}}}$
Now, put the mass of ether 50 g and molecular mass of ether $74\;{\rm{g}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}$in the above equation and solve for moles of A.
$\begin{array}{c}\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442\;{\rm{mm}}\;{\rm{Hg}}}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{50\;{\rm{g}}}}{{74\;{\rm{g}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}}}}}\\\dfrac{{16}}{{442}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{0.6756\;mol}}\end{array}$
Now, calculate moles of A.
$\begin{array}{c}{\rm{Moles}}\;{\rm{of A}} = \dfrac{{16 \times 0.6756}}{{442}}{\rm{mol}}\\{\rm{ = 0}}{\rm{.0244}}\;{\rm{mol}}\end{array}$
So, moles of A in the solution is 0.0244 mol.
Now, we use the formula of moles to calculate the molecular mass of A.
${\rm{Number}}\;{\rm{of}}\;{\rm{moles = }}\dfrac{{{\rm{Mass}}}}{{{\rm{Molar \,Mass}}}}$
We rearrange the above formula and put the value of moles of A and mass of A.
$\begin{array}{c}{\rm{Molar \,Mass\, of\, A}} = \dfrac{{{\rm{Mass}}\;{\rm{of}}\,{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}\\ = \dfrac{{3\;{\rm{g}}}}{{0.0244\;{\rm{mol}}}}\\ = 122.95\,{\rm{gmo}}{{\rm{l}}^{ - 1}}\\ = 123\;g\,{\rm{mo}}{{\rm{l}}^{ - 1}}\end{array}$
Therefore, molecular mass of A is $123\;g\,{\rm{mo}}{{\rm{l}}^{ - 1}}$. Hence, option C is correct.
Note: It is to be noted that, for dilute solution the moles of solute is neglected in the denominator of the lowering of vapour pressure equation. So, the equation becomes $\dfrac{{p_1^0 - {p_1}}}{{p_1^0}} = \dfrac{{{n_2}}}{{{n_1}}}$, where ${n_2}$ is moles of solute and ${n_1}$ moles of solvent.
Complete answer:
If a solution contains non-volatile solute, the lowering of vapor pressure depends on the sum of mole fraction of different solutes. So, the mathematical equation representing the condition is,
$\dfrac{\Delta p_1}{{p_1}^0}=x_2$
$\dfrac{{p_1}^0- p_1}{{p_1}^0}=x_2$ …… (1)
Where, $\Delta {p_1}$ is lowering of vapor pressure, $p_1^0$ is the vapor pressure of pure solvent, ${p_1}$ of solution and ${x_2}$ is mole fraction of solute.
Now, come to the question. Given that vapor pressure of ether is 442 mm Hg. When a solute A is added to ether, vapor pressure falls to 426 mm Hg. So, $p_1^0 = 442\;{\rm{mm}}\;{\rm{Hg}}$ and ${p_1} = 426\;{\rm{mm}}\;{\rm{Hg}}$
Substitute the value of $p_1^0$ and ${p_1}$ in equation (1).
$\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442}} = {x_A}$ ….. (2)
Now, write the mole fraction part of the above equation. Here, solute A of 3 g is added to 50 g ether. So, mole fraction of the solute A is,
${x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}} + {\rm{Moles}}\;{\rm{of}}\;{\rm{ether}}}}$ …… (3)
As solution of A is dilute, moles of A <<< moles of ether
So, ${\rm{Moles\;of\;A}} + {\rm{ Moles\;of\;ether}} \approx {\rm{Moles\;of\; ether}}$
So, equation (3) becomes,
${x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{ether}}}}$
We know that moles can be calculated by dividing mass by molar mass. So, the above equation becomes,
${x_A} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}{{{\rm{Molecular}}\,{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}}}$
Now, we substitute ${x_A}$ in equation (2).
$\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442\;{\rm{mm}}\;{\rm{Hg}}}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}{{{\rm{Molecular}}\,{\rm{Mass}}\;{\rm{of}}\;{\rm{ether}}}}}}$
Now, put the mass of ether 50 g and molecular mass of ether $74\;{\rm{g}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}$in the above equation and solve for moles of A.
$\begin{array}{c}\dfrac{{442\;{\rm{mm}}\;{\rm{Hg}} - 426\;{\rm{mm}}\;{\rm{Hg}}}}{{442\;{\rm{mm}}\;{\rm{Hg}}}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{\dfrac{{50\;{\rm{g}}}}{{74\;{\rm{g}}\;{\rm{mo}}{{\rm{l}}^{ - 1}}}}}}\\\dfrac{{16}}{{442}} = \dfrac{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}{{0.6756\;mol}}\end{array}$
Now, calculate moles of A.
$\begin{array}{c}{\rm{Moles}}\;{\rm{of A}} = \dfrac{{16 \times 0.6756}}{{442}}{\rm{mol}}\\{\rm{ = 0}}{\rm{.0244}}\;{\rm{mol}}\end{array}$
So, moles of A in the solution is 0.0244 mol.
Now, we use the formula of moles to calculate the molecular mass of A.
${\rm{Number}}\;{\rm{of}}\;{\rm{moles = }}\dfrac{{{\rm{Mass}}}}{{{\rm{Molar \,Mass}}}}$
We rearrange the above formula and put the value of moles of A and mass of A.
$\begin{array}{c}{\rm{Molar \,Mass\, of\, A}} = \dfrac{{{\rm{Mass}}\;{\rm{of}}\,{\rm{A}}}}{{{\rm{Moles}}\;{\rm{of}}\;{\rm{A}}}}\\ = \dfrac{{3\;{\rm{g}}}}{{0.0244\;{\rm{mol}}}}\\ = 122.95\,{\rm{gmo}}{{\rm{l}}^{ - 1}}\\ = 123\;g\,{\rm{mo}}{{\rm{l}}^{ - 1}}\end{array}$
Therefore, molecular mass of A is $123\;g\,{\rm{mo}}{{\rm{l}}^{ - 1}}$. Hence, option C is correct.
Note: It is to be noted that, for dilute solution the moles of solute is neglected in the denominator of the lowering of vapour pressure equation. So, the equation becomes $\dfrac{{p_1^0 - {p_1}}}{{p_1^0}} = \dfrac{{{n_2}}}{{{n_1}}}$, where ${n_2}$ is moles of solute and ${n_1}$ moles of solvent.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
