The Van’t Hoff factor, i for a \[0.2\] molar aqueous solutions of urea is
A) \[0.2\]
B) \[0.1\]
C) \[1.2\]
D) \[1.0\]
Answer
282.6k+ views
Hint: We need to know that the Van’t Hoff is one of the important factors in the solution. The association or dissociation of the solute particle in the solution was predicted by the increases or decreases calculated molar mass of the colligative property. The symbol of Van’t Hoff factor is i. The Van’t Hoff factor makes a relationship between observed property and actual property of the solution. The value of I is less than one means observed molar mass is greater than actual molar mass. Otherwise, the value of I is lesser than one means observed molar mass is lesser than actual molar mass.
Formula used:
The Van’t Hoff factor is defined as the ratio of the observed molar mass to the actual molar mass of the solution.
\[{\text{i = }}\dfrac{{{\text{observed molar mass of the solution}}}}{{{\text{actualmolarmassofthesoltion}}}}\]
Complete answer:
The Van’t Hoff factor is,
\[{\text{i = }}\dfrac{{{\text{observed colligative property}}}}{{{\text{actual colligative property}}}}\]
The Van’t Hoff factor the given condition,
The actual molar mass of urea in aqueous solution is \[0.2\].
The observed molar mass of urea in aqueous solution is \[0.2\].
The Van’t Hoff factor is
\[{\text{i = }}\dfrac{{{\text{observed colligative property}}}}{{{\text{actual colligative property}}}}\]
Now we can substitute the known values get,
\[{\text{i = }}\dfrac{{0.2}}{{{\text{0}}{\text{.2}}}}\]
On simplification we get,
\[ = 1.0\]
The Van’t Hoff factor, i for a $0.2$ molar aqueous solutions of urea is \[1.0\]
Hence, option D is correct.
Note:
We have to know that the nature of the solute and the solvent affect the properties of the solution. These affecting property of the solution by addition of solute in the solution is known as colligative property. There are four major colligative properties for ideal solution. There are relative lowering vapour pressures of the solution after addition of solute, the elevation of boiling point of the solution after addition of the solute, the depression of freezing point of the solution after addition of solute and the osmotic pressure of the solution. The above mentioned properties are caused due to the addition of solute in solution.
Formula used:
The Van’t Hoff factor is defined as the ratio of the observed molar mass to the actual molar mass of the solution.
\[{\text{i = }}\dfrac{{{\text{observed molar mass of the solution}}}}{{{\text{actualmolarmassofthesoltion}}}}\]
Complete answer:
The Van’t Hoff factor is,
\[{\text{i = }}\dfrac{{{\text{observed colligative property}}}}{{{\text{actual colligative property}}}}\]
The Van’t Hoff factor the given condition,
The actual molar mass of urea in aqueous solution is \[0.2\].
The observed molar mass of urea in aqueous solution is \[0.2\].
The Van’t Hoff factor is
\[{\text{i = }}\dfrac{{{\text{observed colligative property}}}}{{{\text{actual colligative property}}}}\]
Now we can substitute the known values get,
\[{\text{i = }}\dfrac{{0.2}}{{{\text{0}}{\text{.2}}}}\]
On simplification we get,
\[ = 1.0\]
The Van’t Hoff factor, i for a $0.2$ molar aqueous solutions of urea is \[1.0\]
Hence, option D is correct.
Note:
We have to know that the nature of the solute and the solvent affect the properties of the solution. These affecting property of the solution by addition of solute in the solution is known as colligative property. There are four major colligative properties for ideal solution. There are relative lowering vapour pressures of the solution after addition of solute, the elevation of boiling point of the solution after addition of the solute, the depression of freezing point of the solution after addition of solute and the osmotic pressure of the solution. The above mentioned properties are caused due to the addition of solute in solution.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
Which one of the following places is unlikely to be class 8 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference Between Plant Cell and Animal Cell

Find the HCF and LCM of 6 72 and 120 using the prime class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
