Answer
Verified
495.3k+ views
Hint: You can solve this problem by taking logarithm and after that you will come to know that you have to use L-Hospital’s Rule
Step by step solution:
We will rewrite the given equation first,
\[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
Consider it as L,
\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
We will put limits directly,
\[\therefore L={{\left( \dfrac{{{20}^{\infty }}-1}{19({{5}^{\infty }})} \right)}^{\dfrac{1}{\infty }}}\]
\[\therefore L={{\left( \dfrac{\infty }{\infty } \right)}^{0}}\]
As it is an indeterminate form therefore we should solve it by using different method,
\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
Taking log on both sides, we will get
\[\therefore \log L=\log \left[ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]
As we all know that ‘log’ can be inserted in limits,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \log {{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]
To proceed further we should know some rules of logarithm which are given below,
Formulae:
1.\[\log ({{m}^{n}})=n\times \log m\]
2.\[\log \left( \dfrac{m}{n} \right)=\log m-\log n\]
3.\[\log \left( m\times n \right)=\log m+\log n\]
By using formula 1 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{x}\times \log \left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right) \right]\]
By using formula 2 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\log \left( 19\times {{5}^{x}} \right) \right]\]
By using formula 3 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+\log {{5}^{x}} \right] \right]\]
By using formula 1 again we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+x\times \log 5 \right] \right]\]
Now we will give negative sign inside the bracket,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\left[ \log \left( {{20}^{x}}-1 \right)-\log 19-x\times \log 5 \right]}{x}\]
We will divide each term by x which is in the denominator to simplify the expression,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\dfrac{x\times \log 5}{x} \right]\]
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\log 5 \right]\]
As we all know limits can be given separately for each term, therefore we can write above equation as,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\log 5\]
If we put the limits in the last term it won’t change as it’s a constant therefore, it can be written as,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]………………………………………………. (a)
(i) (ii)
We should solve (i) and (ii) separately,
Consider,
\[L1=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}\]
If we put limits directly we will get,
\[\therefore L1=\dfrac{\log \left( {{20}^{\infty }}-1 \right)}{\infty }\]
\[\therefore L1=\dfrac{\infty }{\infty }\]
As it is giving a \[\dfrac{\infty }{\infty }\] form which is an indeterminate form therefore we should L-Hospital’s Rule which is given below,
L-Hospital’s Rule:
If a limit of a function is giving an indeterminate form then,
\[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}f(x)}{\dfrac{d}{dx}g(x)}\],
And we can take the derivatives till the denominator is not becoming zero if we put the limits.
By using L-Hospital’s Rule we can write L1 as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{d}{dx}\left[ \log \left( {{20}^{x}}-1 \right) \right]}{\dfrac{d}{dx}\left( x \right)} \right]\]
Before proceeding further we should know the formulae of derivatives given below,
Formulae:
4. \[\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\]
5. \[\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\times \log a\]
6. \[\dfrac{d}{dx}\left( x \right)=1\]
By using formula 4 and 6 we can write L1 as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{1}{\left( {{20}^{x}}-1 \right)}\times \dfrac{d}{dx}\left( {{20}^{x}}-1 \right)}{1} \right]\]
By using formula 5 we can write above equation as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{\left( {{20}^{x}}-1 \right)}\times {{20}^{x}}\times \log 20 \right]\]
As we observe above equation we can easily see that the denominator is still not vanished and still
maintaining the \[\dfrac{\infty }{\infty }\] form so we have to use L-Hospitals rule again. But it will be
lengthy as solved above.
To solve it shortly and to save time we can just take \[{{20}^{x}}\]common from denominator, therefore
we can write above equation as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{{{20}^{x}}\times \log 20}{{{20}^{x}}\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]
Now put the limits directly to get the answer,
\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{\infty }}} \right)}\]
\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{\infty } \right)}\]
As we all know that the value of \[\dfrac{1}{\infty }\] is 0,
\[\therefore L1=\dfrac{\log 20}{\left( 1-0 \right)}\]
\[\therefore L1=\log 20\]……………………………………………………………….. (b)
Consider,
\[L2=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}\]
If we put the limits directly we will get,
\[\therefore L2=\dfrac{\log 19}{\infty }\]
As we all know that the value of \[\dfrac{1}{\infty }\] is 0, therefore above equation will become,
\[\therefore L2=0\times \log 19\]
\[\therefore L2=0\]………………………………………………………………….. (c)
Now put the value of equation (b) and (c) in equation (a) we will get,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]
\[\therefore \log L=\log 20-0-\log 5\]
\[\therefore \log L=\log 20-\log 5\]
If we use the formula 2 in above equation we will get,
\[\therefore \log L=\log \dfrac{20}{5}\]
\[\therefore \log L=\log 4\]
We will take antilog on both sides to get the final answer,
\[\therefore L=4\]
\[\therefore \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}=4\]
Therefore the value of \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\] is 4.
Note: You can commit a mistake which I have shown below, but do remember that x is tending to infinity
and not tending to Zero and therefore the formula is not applicable in the above case.
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( {{a}^{x}}-1 \right)}^{\dfrac{1}{x}}}=e\] but \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( {{20}^{x}}-1 \right)}^{\dfrac{1}{x}}}\ne e\]
Step by step solution:
We will rewrite the given equation first,
\[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
Consider it as L,
\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
We will put limits directly,
\[\therefore L={{\left( \dfrac{{{20}^{\infty }}-1}{19({{5}^{\infty }})} \right)}^{\dfrac{1}{\infty }}}\]
\[\therefore L={{\left( \dfrac{\infty }{\infty } \right)}^{0}}\]
As it is an indeterminate form therefore we should solve it by using different method,
\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]
Taking log on both sides, we will get
\[\therefore \log L=\log \left[ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]
As we all know that ‘log’ can be inserted in limits,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \log {{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]
To proceed further we should know some rules of logarithm which are given below,
Formulae:
1.\[\log ({{m}^{n}})=n\times \log m\]
2.\[\log \left( \dfrac{m}{n} \right)=\log m-\log n\]
3.\[\log \left( m\times n \right)=\log m+\log n\]
By using formula 1 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{x}\times \log \left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right) \right]\]
By using formula 2 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\log \left( 19\times {{5}^{x}} \right) \right]\]
By using formula 3 we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+\log {{5}^{x}} \right] \right]\]
By using formula 1 again we can write log L as shown below,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+x\times \log 5 \right] \right]\]
Now we will give negative sign inside the bracket,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\left[ \log \left( {{20}^{x}}-1 \right)-\log 19-x\times \log 5 \right]}{x}\]
We will divide each term by x which is in the denominator to simplify the expression,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\dfrac{x\times \log 5}{x} \right]\]
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\log 5 \right]\]
As we all know limits can be given separately for each term, therefore we can write above equation as,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\log 5\]
If we put the limits in the last term it won’t change as it’s a constant therefore, it can be written as,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]………………………………………………. (a)
(i) (ii)
We should solve (i) and (ii) separately,
Consider,
\[L1=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}\]
If we put limits directly we will get,
\[\therefore L1=\dfrac{\log \left( {{20}^{\infty }}-1 \right)}{\infty }\]
\[\therefore L1=\dfrac{\infty }{\infty }\]
As it is giving a \[\dfrac{\infty }{\infty }\] form which is an indeterminate form therefore we should L-Hospital’s Rule which is given below,
L-Hospital’s Rule:
If a limit of a function is giving an indeterminate form then,
\[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}f(x)}{\dfrac{d}{dx}g(x)}\],
And we can take the derivatives till the denominator is not becoming zero if we put the limits.
By using L-Hospital’s Rule we can write L1 as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{d}{dx}\left[ \log \left( {{20}^{x}}-1 \right) \right]}{\dfrac{d}{dx}\left( x \right)} \right]\]
Before proceeding further we should know the formulae of derivatives given below,
Formulae:
4. \[\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\]
5. \[\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\times \log a\]
6. \[\dfrac{d}{dx}\left( x \right)=1\]
By using formula 4 and 6 we can write L1 as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{1}{\left( {{20}^{x}}-1 \right)}\times \dfrac{d}{dx}\left( {{20}^{x}}-1 \right)}{1} \right]\]
By using formula 5 we can write above equation as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{\left( {{20}^{x}}-1 \right)}\times {{20}^{x}}\times \log 20 \right]\]
As we observe above equation we can easily see that the denominator is still not vanished and still
maintaining the \[\dfrac{\infty }{\infty }\] form so we have to use L-Hospitals rule again. But it will be
lengthy as solved above.
To solve it shortly and to save time we can just take \[{{20}^{x}}\]common from denominator, therefore
we can write above equation as,
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{{{20}^{x}}\times \log 20}{{{20}^{x}}\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]
\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]
Now put the limits directly to get the answer,
\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{\infty }}} \right)}\]
\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{\infty } \right)}\]
As we all know that the value of \[\dfrac{1}{\infty }\] is 0,
\[\therefore L1=\dfrac{\log 20}{\left( 1-0 \right)}\]
\[\therefore L1=\log 20\]……………………………………………………………….. (b)
Consider,
\[L2=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}\]
If we put the limits directly we will get,
\[\therefore L2=\dfrac{\log 19}{\infty }\]
As we all know that the value of \[\dfrac{1}{\infty }\] is 0, therefore above equation will become,
\[\therefore L2=0\times \log 19\]
\[\therefore L2=0\]………………………………………………………………….. (c)
Now put the value of equation (b) and (c) in equation (a) we will get,
\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]
\[\therefore \log L=\log 20-0-\log 5\]
\[\therefore \log L=\log 20-\log 5\]
If we use the formula 2 in above equation we will get,
\[\therefore \log L=\log \dfrac{20}{5}\]
\[\therefore \log L=\log 4\]
We will take antilog on both sides to get the final answer,
\[\therefore L=4\]
\[\therefore \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}=4\]
Therefore the value of \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\] is 4.
Note: You can commit a mistake which I have shown below, but do remember that x is tending to infinity
and not tending to Zero and therefore the formula is not applicable in the above case.
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( {{a}^{x}}-1 \right)}^{\dfrac{1}{x}}}=e\] but \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( {{20}^{x}}-1 \right)}^{\dfrac{1}{x}}}\ne e\]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE