# The value of \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\] is_________.

Last updated date: 30th Mar 2023

•

Total views: 309k

•

Views today: 3.86k

Answer

Verified

309k+ views

Hint: You can solve this problem by taking logarithm and after that you will come to know that you have to use L-Hospital’s Rule

Step by step solution:

We will rewrite the given equation first,

\[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]

Consider it as L,

\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]

We will put limits directly,

\[\therefore L={{\left( \dfrac{{{20}^{\infty }}-1}{19({{5}^{\infty }})} \right)}^{\dfrac{1}{\infty }}}\]

\[\therefore L={{\left( \dfrac{\infty }{\infty } \right)}^{0}}\]

As it is an indeterminate form therefore we should solve it by using different method,

\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]

Taking log on both sides, we will get

\[\therefore \log L=\log \left[ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]

As we all know that ‘log’ can be inserted in limits,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \log {{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]

To proceed further we should know some rules of logarithm which are given below,

Formulae:

1.\[\log ({{m}^{n}})=n\times \log m\]

2.\[\log \left( \dfrac{m}{n} \right)=\log m-\log n\]

3.\[\log \left( m\times n \right)=\log m+\log n\]

By using formula 1 we can write log L as shown below,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{x}\times \log \left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right) \right]\]

By using formula 2 we can write log L as shown below,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\log \left( 19\times {{5}^{x}} \right) \right]\]

By using formula 3 we can write log L as shown below,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+\log {{5}^{x}} \right] \right]\]

By using formula 1 again we can write log L as shown below,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+x\times \log 5 \right] \right]\]

Now we will give negative sign inside the bracket,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\left[ \log \left( {{20}^{x}}-1 \right)-\log 19-x\times \log 5 \right]}{x}\]

We will divide each term by x which is in the denominator to simplify the expression,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\dfrac{x\times \log 5}{x} \right]\]

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\log 5 \right]\]

As we all know limits can be given separately for each term, therefore we can write above equation as,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\log 5\]

If we put the limits in the last term it won’t change as it’s a constant therefore, it can be written as,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]………………………………………………. (a)

(i) (ii)

We should solve (i) and (ii) separately,

Consider,

\[L1=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}\]

If we put limits directly we will get,

\[\therefore L1=\dfrac{\log \left( {{20}^{\infty }}-1 \right)}{\infty }\]

\[\therefore L1=\dfrac{\infty }{\infty }\]

As it is giving a \[\dfrac{\infty }{\infty }\] form which is an indeterminate form therefore we should L-Hospital’s Rule which is given below,

L-Hospital’s Rule:

If a limit of a function is giving an indeterminate form then,

\[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}f(x)}{\dfrac{d}{dx}g(x)}\],

And we can take the derivatives till the denominator is not becoming zero if we put the limits.

By using L-Hospital’s Rule we can write L1 as,

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{d}{dx}\left[ \log \left( {{20}^{x}}-1 \right) \right]}{\dfrac{d}{dx}\left( x \right)} \right]\]

Before proceeding further we should know the formulae of derivatives given below,

Formulae:

4. \[\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\]

5. \[\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\times \log a\]

6. \[\dfrac{d}{dx}\left( x \right)=1\]

By using formula 4 and 6 we can write L1 as,

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{1}{\left( {{20}^{x}}-1 \right)}\times \dfrac{d}{dx}\left( {{20}^{x}}-1 \right)}{1} \right]\]

By using formula 5 we can write above equation as,

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{\left( {{20}^{x}}-1 \right)}\times {{20}^{x}}\times \log 20 \right]\]

As we observe above equation we can easily see that the denominator is still not vanished and still

maintaining the \[\dfrac{\infty }{\infty }\] form so we have to use L-Hospitals rule again. But it will be

lengthy as solved above.

To solve it shortly and to save time we can just take \[{{20}^{x}}\]common from denominator, therefore

we can write above equation as,

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{{{20}^{x}}\times \log 20}{{{20}^{x}}\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]

Now put the limits directly to get the answer,

\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{\infty }}} \right)}\]

\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{\infty } \right)}\]

As we all know that the value of \[\dfrac{1}{\infty }\] is 0,

\[\therefore L1=\dfrac{\log 20}{\left( 1-0 \right)}\]

\[\therefore L1=\log 20\]……………………………………………………………….. (b)

Consider,

\[L2=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}\]

If we put the limits directly we will get,

\[\therefore L2=\dfrac{\log 19}{\infty }\]

As we all know that the value of \[\dfrac{1}{\infty }\] is 0, therefore above equation will become,

\[\therefore L2=0\times \log 19\]

\[\therefore L2=0\]………………………………………………………………….. (c)

Now put the value of equation (b) and (c) in equation (a) we will get,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]

\[\therefore \log L=\log 20-0-\log 5\]

\[\therefore \log L=\log 20-\log 5\]

If we use the formula 2 in above equation we will get,

\[\therefore \log L=\log \dfrac{20}{5}\]

\[\therefore \log L=\log 4\]

We will take antilog on both sides to get the final answer,

\[\therefore L=4\]

\[\therefore \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}=4\]

Therefore the value of \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\] is 4.

Note: You can commit a mistake which I have shown below, but do remember that x is tending to infinity

and not tending to Zero and therefore the formula is not applicable in the above case.

\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( {{a}^{x}}-1 \right)}^{\dfrac{1}{x}}}=e\] but \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( {{20}^{x}}-1 \right)}^{\dfrac{1}{x}}}\ne e\]

Step by step solution:

We will rewrite the given equation first,

\[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]

Consider it as L,

\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]

We will put limits directly,

\[\therefore L={{\left( \dfrac{{{20}^{\infty }}-1}{19({{5}^{\infty }})} \right)}^{\dfrac{1}{\infty }}}\]

\[\therefore L={{\left( \dfrac{\infty }{\infty } \right)}^{0}}\]

As it is an indeterminate form therefore we should solve it by using different method,

\[\therefore L=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\]

Taking log on both sides, we will get

\[\therefore \log L=\log \left[ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]

As we all know that ‘log’ can be inserted in limits,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \log {{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}} \right]\]

To proceed further we should know some rules of logarithm which are given below,

Formulae:

1.\[\log ({{m}^{n}})=n\times \log m\]

2.\[\log \left( \dfrac{m}{n} \right)=\log m-\log n\]

3.\[\log \left( m\times n \right)=\log m+\log n\]

By using formula 1 we can write log L as shown below,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{x}\times \log \left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right) \right]\]

By using formula 2 we can write log L as shown below,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\log \left( 19\times {{5}^{x}} \right) \right]\]

By using formula 3 we can write log L as shown below,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+\log {{5}^{x}} \right] \right]\]

By using formula 1 again we can write log L as shown below,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{1}{x}\times \left[ \log \left( {{20}^{x}}-1 \right)-\left[ \log 19+x\times \log 5 \right] \right]\]

Now we will give negative sign inside the bracket,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\left[ \log \left( {{20}^{x}}-1 \right)-\log 19-x\times \log 5 \right]}{x}\]

We will divide each term by x which is in the denominator to simplify the expression,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\dfrac{x\times \log 5}{x} \right]\]

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\dfrac{\log 19}{x}-\log 5 \right]\]

As we all know limits can be given separately for each term, therefore we can write above equation as,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\log 5\]

If we put the limits in the last term it won’t change as it’s a constant therefore, it can be written as,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]………………………………………………. (a)

(i) (ii)

We should solve (i) and (ii) separately,

Consider,

\[L1=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}\]

If we put limits directly we will get,

\[\therefore L1=\dfrac{\log \left( {{20}^{\infty }}-1 \right)}{\infty }\]

\[\therefore L1=\dfrac{\infty }{\infty }\]

As it is giving a \[\dfrac{\infty }{\infty }\] form which is an indeterminate form therefore we should L-Hospital’s Rule which is given below,

L-Hospital’s Rule:

If a limit of a function is giving an indeterminate form then,

\[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dx}f(x)}{\dfrac{d}{dx}g(x)}\],

And we can take the derivatives till the denominator is not becoming zero if we put the limits.

By using L-Hospital’s Rule we can write L1 as,

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{d}{dx}\left[ \log \left( {{20}^{x}}-1 \right) \right]}{\dfrac{d}{dx}\left( x \right)} \right]\]

Before proceeding further we should know the formulae of derivatives given below,

Formulae:

4. \[\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}\]

5. \[\dfrac{d}{dx}\left( {{a}^{x}} \right)={{a}^{x}}\times \log a\]

6. \[\dfrac{d}{dx}\left( x \right)=1\]

By using formula 4 and 6 we can write L1 as,

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{1}{\left( {{20}^{x}}-1 \right)}\times \dfrac{d}{dx}\left( {{20}^{x}}-1 \right)}{1} \right]\]

By using formula 5 we can write above equation as,

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{1}{\left( {{20}^{x}}-1 \right)}\times {{20}^{x}}\times \log 20 \right]\]

As we observe above equation we can easily see that the denominator is still not vanished and still

maintaining the \[\dfrac{\infty }{\infty }\] form so we have to use L-Hospitals rule again. But it will be

lengthy as solved above.

To solve it shortly and to save time we can just take \[{{20}^{x}}\]common from denominator, therefore

we can write above equation as,

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{{{20}^{x}}\times \log 20}{{{20}^{x}}\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]

\[\therefore L1=\underset{x\to \infty }{\mathop{\lim }}\,\left[ \dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{x}}} \right)} \right]\]

Now put the limits directly to get the answer,

\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{{{20}^{\infty }}} \right)}\]

\[\therefore L1=\dfrac{\log 20}{\left( 1-\dfrac{1}{\infty } \right)}\]

As we all know that the value of \[\dfrac{1}{\infty }\] is 0,

\[\therefore L1=\dfrac{\log 20}{\left( 1-0 \right)}\]

\[\therefore L1=\log 20\]……………………………………………………………….. (b)

Consider,

\[L2=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}\]

If we put the limits directly we will get,

\[\therefore L2=\dfrac{\log 19}{\infty }\]

As we all know that the value of \[\dfrac{1}{\infty }\] is 0, therefore above equation will become,

\[\therefore L2=0\times \log 19\]

\[\therefore L2=0\]………………………………………………………………….. (c)

Now put the value of equation (b) and (c) in equation (a) we will get,

\[\therefore \log L=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log \left( {{20}^{x}}-1 \right)}{x}-\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{\log 19}{x}-\log 5\]

\[\therefore \log L=\log 20-0-\log 5\]

\[\therefore \log L=\log 20-\log 5\]

If we use the formula 2 in above equation we will get,

\[\therefore \log L=\log \dfrac{20}{5}\]

\[\therefore \log L=\log 4\]

We will take antilog on both sides to get the final answer,

\[\therefore L=4\]

\[\therefore \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}=4\]

Therefore the value of \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( \dfrac{{{20}^{x}}-1}{19({{5}^{x}})} \right)}^{\dfrac{1}{x}}}\] is 4.

Note: You can commit a mistake which I have shown below, but do remember that x is tending to infinity

and not tending to Zero and therefore the formula is not applicable in the above case.

\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( {{a}^{x}}-1 \right)}^{\dfrac{1}{x}}}=e\] but \[\underset{x\to \infty }{\mathop{\lim }}\,{{\left( {{20}^{x}}-1 \right)}^{\dfrac{1}{x}}}\ne e\]

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE