Answer
Verified
428.1k+ views
Hint: The squeeze theorem states that if we define functions such that h(x) ≤ f(x) ≤ g(x) and if $\underset{x\to a}{\mathop{\lim }}\,h(x)=\underset{x\to a}{\mathop{\lim }}\,g(x)=L$ , then $\underset{x\to a}{\mathop{\lim }}\,f(x)=L$ .
The sum $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6}$ .
Complete step-by-step answer:
Let’s say that ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ .
Since 0 < r ≤ n, we can say that:
\[{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}\]
After reciprocal them, sign of inequality changes,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}\]
Multiply by r2, we get
⇒ \[\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}\]
Taking submission from r=1 to r=n,
⇒ \[\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}\]
On solving,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}\]
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\]
On applying the limits, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]\]
Dividing the numerator and the denominator by the highest power of n, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]\]
Now, as $n\to \infty ,\dfrac{1}{n}\to 0$ .
⇒ \[\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]\]
⇒ \[\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)\]
⇒ \[\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}\]
Therefore, by using the squeeze theorem, \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3}\] .
The correct answer option is A.
Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.
The sum $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6}$ .
Complete step-by-step answer:
Let’s say that ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ .
Since 0 < r ≤ n, we can say that:
\[{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}\]
After reciprocal them, sign of inequality changes,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}\]
Multiply by r2, we get
⇒ \[\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}\]
Taking submission from r=1 to r=n,
⇒ \[\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}\]
On solving,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}\]
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\]
On applying the limits, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]\]
Dividing the numerator and the denominator by the highest power of n, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]\]
Now, as $n\to \infty ,\dfrac{1}{n}\to 0$ .
⇒ \[\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]\]
⇒ \[\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)\]
⇒ \[\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}\]
Therefore, by using the squeeze theorem, \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3}\] .
The correct answer option is A.
Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE