The value of $\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ equals:
A. $\dfrac{1}{3}$
B. $\dfrac{1}{2}$
C. $\dfrac{2}{3}$
D. 1
Answer
Verified
459.9k+ views
Hint: The squeeze theorem states that if we define functions such that h(x) ≤ f(x) ≤ g(x) and if $\underset{x\to a}{\mathop{\lim }}\,h(x)=\underset{x\to a}{\mathop{\lim }}\,g(x)=L$ , then $\underset{x\to a}{\mathop{\lim }}\,f(x)=L$ .
The sum $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6}$ .
Complete step-by-step answer:
Let’s say that ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ .
Since 0 < r ≤ n, we can say that:
\[{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}\]
After reciprocal them, sign of inequality changes,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}\]
Multiply by r2, we get
⇒ \[\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}\]
Taking submission from r=1 to r=n,
⇒ \[\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}\]
On solving,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}\]
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\]
On applying the limits, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]\]
Dividing the numerator and the denominator by the highest power of n, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]\]
Now, as $n\to \infty ,\dfrac{1}{n}\to 0$ .
⇒ \[\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]\]
⇒ \[\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)\]
⇒ \[\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}\]
Therefore, by using the squeeze theorem, \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3}\] .
The correct answer option is A.
Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.
The sum $\sum\limits_{r=1}^{n}{{{r}^{2}}}=\dfrac{n(n+1)(2n+1)}{6}$ .
Complete step-by-step answer:
Let’s say that ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}$ .
Since 0 < r ≤ n, we can say that:
\[{{n}^{3}}+{{n}^{2}}+n\ge {{n}^{3}}+{{n}^{2}}+r\ge {{n}^{3}}\]
After reciprocal them, sign of inequality changes,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{1}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{1}{{{n}^{3}}}\]
Multiply by r2, we get
⇒ \[\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}\le \dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}\le \dfrac{{{r}^{2}}}{{{n}^{3}}}\]
Taking submission from r=1 to r=n,
⇒ \[\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+n}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}\le \sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}}}\]
On solving,
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\sum\limits_{r=1}^{n}{{{r}^{2}}}\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\sum\limits_{r=1}^{n}{{{r}^{2}}}\]
⇒ \[\dfrac{1}{{{n}^{3}}+{{n}^{2}}+n}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\le {{S}_{n}}\le \dfrac{1}{{{n}^{3}}}\left[ \dfrac{n(n+1)(2n+1)}{6} \right]\]
On applying the limits, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}+{{n}^{2}}+n} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2{{n}^{3}}+3{{n}^{2}}+n}{{{n}^{3}}} \right]\]
Dividing the numerator and the denominator by the highest power of n, we get:
⇒ \[\dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1+\tfrac{1}{n}+\tfrac{1}{{{n}^{2}}}} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{2+\tfrac{3}{n}+\tfrac{1}{{{n}^{2}}}}{1} \right]\]
Now, as $n\to \infty ,\dfrac{1}{n}\to 0$ .
⇒ \[\dfrac{1}{6}\left[ \dfrac{2+0+0}{1+0+0} \right]\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}\left[ \dfrac{2+0+0}{1} \right]\]
⇒ \[\dfrac{1}{6}(2)\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{6}(2)\]
⇒ \[\dfrac{1}{3}\le \underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}\le \dfrac{1}{3}\]
Therefore, by using the squeeze theorem, \[\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\dfrac{{{r}^{2}}}{{{n}^{3}}+{{n}^{2}}+r}}=\dfrac{1}{3}\] .
The correct answer option is A.
Note: The squeeze theorem is typically used to confirm the limit of a function via comparison with two other functions whose limits are known or easily computed.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE