Answer
Verified
448.5k+ views
Hint: First we will convert all angles to the first quadrant using the properties;
\[\sin ({180^o} - x) = \sin x\]
We will further simplify the expression to convert in the form of cos36° and sin18° as they are defined as having the values
$
\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4} \\
\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
$
Complete step-by-step answer:
Given \[(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})\]
We first use \[\sin ({180^o} - x) = \sin x\], we get,
\[ \Rightarrow (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})]\]
\[
\Rightarrow (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
\Rightarrow {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
\]
On Multiplying and dividing by 4, we get,
\[ \Rightarrow \dfrac{1}{4}{\left[ {2(\sin {{36}^o})(\sin {{72}^o})} \right]^2}\]
Now on using \[2\sin A\sin B = [\cos (A - B) - \cos (A + B)]\], we get,
\[
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos {{108}^o}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos ({{90}^o} + {{18}^o})} \right]^2} \\
\]
On using \[\cos \left( {{{90}^o} + x} \right){\text{ }} = {\text{ }} - \sin x\], we get,
On substituting the value of \[\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}\]and \[\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4}\]we get,
\[
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1}}{4}{\text{ }} + {\text{ }}\dfrac{{\sqrt 5 {\text{ }} - {\text{ }}1}}{4}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1 + \sqrt 5 {\text{ }} - {\text{ }}1}}{4}{\text{ }}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\dfrac{{2\sqrt 5 }}{4}} \right]^2} \\
On{\text{ }}squaring{\text{ }}we{\text{ }}get, \\
\Rightarrow \dfrac{1}{4}\left[ {\dfrac{{4(5)}}{{16}}} \right] \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) \\
\Rightarrow \dfrac{5}{{16}} \\
\]
Hence, option (D) is correct.
Note: Whenever solving trigonometric expressions if there is any angle not lying in the first quadrant then try to make it in the first quadrant using the formulas and then try to simplify further, it will make the problem easier.
An alternative method to solve is,
\[
= (\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o}) \\
= (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})] \\
u\sin g,{\text{ }}\sin ({180^o} - x) = \sin x \\
= (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
= {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
= {\left[ {(\sin {{36}^o})(\sin ({{90}^o} - {{18}^o}))} \right]^2} \\
using,{\text{ }}\sin x = \sqrt {1 - {{\cos }^2}x} {\text{ }}and,{\text{ }}\sin ({90^o} - x) = \cos x \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\cos {{18}^o})} \right]^2} \\
using,{\text{ }}\cos x = \sqrt {1 - {{\sin }^2}x} \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\sqrt {1 - {{\sin }^2}{{18}^o}} )} \right]^2} \\
putting{\text{ }}the{\text{ }}value{\text{ }}of{\text{ }}\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}{\text{ }}and,{\text{ }}\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
= {\left[ {\sqrt {1 - {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}} } \right]^2} \\
= {\left[ {\sqrt {\dfrac{{16 - 5 - 1 - 2\sqrt 5 }}{{16}}} \sqrt {\dfrac{{16 - 5 - 1 + 2\sqrt 5 }}{{16}}} } \right]^2} \\
= {\left[ {\dfrac{1}{{16}}\sqrt {10 - 2\sqrt 5 } \sqrt {10 + 2\sqrt 5 } } \right]^2} \\
= \dfrac{{{{10}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{256}} \\
= \dfrac{{100 - 20}}{{256}} \\
= \dfrac{{80}}{{256}} \\
= \dfrac{5}{{16}} \\
\]
\[\sin ({180^o} - x) = \sin x\]
We will further simplify the expression to convert in the form of cos36° and sin18° as they are defined as having the values
$
\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4} \\
\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
$
Complete step-by-step answer:
Given \[(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})\]
We first use \[\sin ({180^o} - x) = \sin x\], we get,
\[ \Rightarrow (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})]\]
\[
\Rightarrow (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
\Rightarrow {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
\]
On Multiplying and dividing by 4, we get,
\[ \Rightarrow \dfrac{1}{4}{\left[ {2(\sin {{36}^o})(\sin {{72}^o})} \right]^2}\]
Now on using \[2\sin A\sin B = [\cos (A - B) - \cos (A + B)]\], we get,
\[
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos {{108}^o}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos ({{90}^o} + {{18}^o})} \right]^2} \\
\]
On using \[\cos \left( {{{90}^o} + x} \right){\text{ }} = {\text{ }} - \sin x\], we get,
On substituting the value of \[\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}\]and \[\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4}\]we get,
\[
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1}}{4}{\text{ }} + {\text{ }}\dfrac{{\sqrt 5 {\text{ }} - {\text{ }}1}}{4}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1 + \sqrt 5 {\text{ }} - {\text{ }}1}}{4}{\text{ }}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\dfrac{{2\sqrt 5 }}{4}} \right]^2} \\
On{\text{ }}squaring{\text{ }}we{\text{ }}get, \\
\Rightarrow \dfrac{1}{4}\left[ {\dfrac{{4(5)}}{{16}}} \right] \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) \\
\Rightarrow \dfrac{5}{{16}} \\
\]
Hence, option (D) is correct.
Note: Whenever solving trigonometric expressions if there is any angle not lying in the first quadrant then try to make it in the first quadrant using the formulas and then try to simplify further, it will make the problem easier.
An alternative method to solve is,
\[
= (\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o}) \\
= (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})] \\
u\sin g,{\text{ }}\sin ({180^o} - x) = \sin x \\
= (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
= {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
= {\left[ {(\sin {{36}^o})(\sin ({{90}^o} - {{18}^o}))} \right]^2} \\
using,{\text{ }}\sin x = \sqrt {1 - {{\cos }^2}x} {\text{ }}and,{\text{ }}\sin ({90^o} - x) = \cos x \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\cos {{18}^o})} \right]^2} \\
using,{\text{ }}\cos x = \sqrt {1 - {{\sin }^2}x} \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\sqrt {1 - {{\sin }^2}{{18}^o}} )} \right]^2} \\
putting{\text{ }}the{\text{ }}value{\text{ }}of{\text{ }}\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}{\text{ }}and,{\text{ }}\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
= {\left[ {\sqrt {1 - {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}} } \right]^2} \\
= {\left[ {\sqrt {\dfrac{{16 - 5 - 1 - 2\sqrt 5 }}{{16}}} \sqrt {\dfrac{{16 - 5 - 1 + 2\sqrt 5 }}{{16}}} } \right]^2} \\
= {\left[ {\dfrac{1}{{16}}\sqrt {10 - 2\sqrt 5 } \sqrt {10 + 2\sqrt 5 } } \right]^2} \\
= \dfrac{{{{10}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{256}} \\
= \dfrac{{100 - 20}}{{256}} \\
= \dfrac{{80}}{{256}} \\
= \dfrac{5}{{16}} \\
\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE