
The value of the expression\[(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})\] is
A.$\dfrac{1}{4}$
B.$\dfrac{1}{{16}}$
C.$\dfrac{3}{4}$
D.$\dfrac{5}{{16}}$
Answer
593.7k+ views
Hint: First we will convert all angles to the first quadrant using the properties;
\[\sin ({180^o} - x) = \sin x\]
We will further simplify the expression to convert in the form of cos36° and sin18° as they are defined as having the values
$
\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4} \\
\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
$
Complete step-by-step answer:
Given \[(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})\]
We first use \[\sin ({180^o} - x) = \sin x\], we get,
\[ \Rightarrow (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})]\]
\[
\Rightarrow (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
\Rightarrow {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
\]
On Multiplying and dividing by 4, we get,
\[ \Rightarrow \dfrac{1}{4}{\left[ {2(\sin {{36}^o})(\sin {{72}^o})} \right]^2}\]
Now on using \[2\sin A\sin B = [\cos (A - B) - \cos (A + B)]\], we get,
\[
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos {{108}^o}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos ({{90}^o} + {{18}^o})} \right]^2} \\
\]
On using \[\cos \left( {{{90}^o} + x} \right){\text{ }} = {\text{ }} - \sin x\], we get,
On substituting the value of \[\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}\]and \[\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4}\]we get,
\[
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1}}{4}{\text{ }} + {\text{ }}\dfrac{{\sqrt 5 {\text{ }} - {\text{ }}1}}{4}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1 + \sqrt 5 {\text{ }} - {\text{ }}1}}{4}{\text{ }}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\dfrac{{2\sqrt 5 }}{4}} \right]^2} \\
On{\text{ }}squaring{\text{ }}we{\text{ }}get, \\
\Rightarrow \dfrac{1}{4}\left[ {\dfrac{{4(5)}}{{16}}} \right] \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) \\
\Rightarrow \dfrac{5}{{16}} \\
\]
Hence, option (D) is correct.
Note: Whenever solving trigonometric expressions if there is any angle not lying in the first quadrant then try to make it in the first quadrant using the formulas and then try to simplify further, it will make the problem easier.
An alternative method to solve is,
\[
= (\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o}) \\
= (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})] \\
u\sin g,{\text{ }}\sin ({180^o} - x) = \sin x \\
= (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
= {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
= {\left[ {(\sin {{36}^o})(\sin ({{90}^o} - {{18}^o}))} \right]^2} \\
using,{\text{ }}\sin x = \sqrt {1 - {{\cos }^2}x} {\text{ }}and,{\text{ }}\sin ({90^o} - x) = \cos x \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\cos {{18}^o})} \right]^2} \\
using,{\text{ }}\cos x = \sqrt {1 - {{\sin }^2}x} \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\sqrt {1 - {{\sin }^2}{{18}^o}} )} \right]^2} \\
putting{\text{ }}the{\text{ }}value{\text{ }}of{\text{ }}\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}{\text{ }}and,{\text{ }}\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
= {\left[ {\sqrt {1 - {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}} } \right]^2} \\
= {\left[ {\sqrt {\dfrac{{16 - 5 - 1 - 2\sqrt 5 }}{{16}}} \sqrt {\dfrac{{16 - 5 - 1 + 2\sqrt 5 }}{{16}}} } \right]^2} \\
= {\left[ {\dfrac{1}{{16}}\sqrt {10 - 2\sqrt 5 } \sqrt {10 + 2\sqrt 5 } } \right]^2} \\
= \dfrac{{{{10}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{256}} \\
= \dfrac{{100 - 20}}{{256}} \\
= \dfrac{{80}}{{256}} \\
= \dfrac{5}{{16}} \\
\]
\[\sin ({180^o} - x) = \sin x\]
We will further simplify the expression to convert in the form of cos36° and sin18° as they are defined as having the values
$
\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4} \\
\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
$
Complete step-by-step answer:
Given \[(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})\]
We first use \[\sin ({180^o} - x) = \sin x\], we get,
\[ \Rightarrow (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})]\]
\[
\Rightarrow (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
\Rightarrow {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
\]
On Multiplying and dividing by 4, we get,
\[ \Rightarrow \dfrac{1}{4}{\left[ {2(\sin {{36}^o})(\sin {{72}^o})} \right]^2}\]
Now on using \[2\sin A\sin B = [\cos (A - B) - \cos (A + B)]\], we get,
\[
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos {{108}^o}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos ({{90}^o} + {{18}^o})} \right]^2} \\
\]
On using \[\cos \left( {{{90}^o} + x} \right){\text{ }} = {\text{ }} - \sin x\], we get,
On substituting the value of \[\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}\]and \[\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4}\]we get,
\[
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1}}{4}{\text{ }} + {\text{ }}\dfrac{{\sqrt 5 {\text{ }} - {\text{ }}1}}{4}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1 + \sqrt 5 {\text{ }} - {\text{ }}1}}{4}{\text{ }}} \right]^2} \\
\Rightarrow \dfrac{1}{4}{\left[ {\dfrac{{2\sqrt 5 }}{4}} \right]^2} \\
On{\text{ }}squaring{\text{ }}we{\text{ }}get, \\
\Rightarrow \dfrac{1}{4}\left[ {\dfrac{{4(5)}}{{16}}} \right] \\
\Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) \\
\Rightarrow \dfrac{5}{{16}} \\
\]
Hence, option (D) is correct.
Note: Whenever solving trigonometric expressions if there is any angle not lying in the first quadrant then try to make it in the first quadrant using the formulas and then try to simplify further, it will make the problem easier.
An alternative method to solve is,
\[
= (\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o}) \\
= (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})] \\
u\sin g,{\text{ }}\sin ({180^o} - x) = \sin x \\
= (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\
= {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\
= {\left[ {(\sin {{36}^o})(\sin ({{90}^o} - {{18}^o}))} \right]^2} \\
using,{\text{ }}\sin x = \sqrt {1 - {{\cos }^2}x} {\text{ }}and,{\text{ }}\sin ({90^o} - x) = \cos x \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\cos {{18}^o})} \right]^2} \\
using,{\text{ }}\cos x = \sqrt {1 - {{\sin }^2}x} \\
= {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\sqrt {1 - {{\sin }^2}{{18}^o}} )} \right]^2} \\
putting{\text{ }}the{\text{ }}value{\text{ }}of{\text{ }}\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}{\text{ }}and,{\text{ }}\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\
= {\left[ {\sqrt {1 - {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}} } \right]^2} \\
= {\left[ {\sqrt {\dfrac{{16 - 5 - 1 - 2\sqrt 5 }}{{16}}} \sqrt {\dfrac{{16 - 5 - 1 + 2\sqrt 5 }}{{16}}} } \right]^2} \\
= {\left[ {\dfrac{1}{{16}}\sqrt {10 - 2\sqrt 5 } \sqrt {10 + 2\sqrt 5 } } \right]^2} \\
= \dfrac{{{{10}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{256}} \\
= \dfrac{{100 - 20}}{{256}} \\
= \dfrac{{80}}{{256}} \\
= \dfrac{5}{{16}} \\
\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

