
The value of the expression ${{\tan }^{-1}}\left( \sec x+\tan x \right)$ in the interval $\left( 0,\dfrac{\pi }{2} \right)$ is
[a] $\dfrac{\pi }{4}-x$
[b] $x-\dfrac{\pi }{4}$
[c] $x+\dfrac{3\pi }{4}$
[d] $\dfrac{x}{2}+\dfrac{\pi }{4}$
Answer
572.4k+ views
Hint: Use the fact that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ and hence prove that $\tan x+\sec x=\dfrac{1+\sin x}{\cos x}$. Use the fact that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$ and hence prove that $\tan x+\sec x=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$. Put $\dfrac{\pi }{2}-x=t$ and use the fact that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$. Hence prove that $\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$. Use the fact that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and hence find the value of ${{\tan }^{-1}}\left( \sec x+\tan x \right),x\in \left( 0,\dfrac{\pi }{2} \right)$
Complete step by step answer:
Let $S=\sec x+\tan x$
We know that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$. Using these identities, we get
$S=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}$
Taking cosx as LCM, we get
$S=\dfrac{1+\sin x}{\cos x}$
We know that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$. Using these identities, we get
$S=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$
Put $\dfrac{\pi }{2}-x=t$, we get
$S=\dfrac{1+\cos t}{\sin t}$
We know that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Using the above identity, we get
$S=\dfrac{2{{\cos }^{2}}\dfrac{t}{2}}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}$
Cancelling the common factor $2\cos \dfrac{t}{2}$ from the numerator and denominator, we get
$S=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}$
We know that $\dfrac{\cos x}{\sin x}=\cot x$
Using the above identity, we get
$S=\cot \dfrac{t}{2}$
We know that $\cot x=\tan \left( \dfrac{\pi }{2}-x \right)$
Using the above identity, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{t}{2} \right)$
Reverting to original variable, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\dfrac{\pi }{2}-x}{2} \right)$
We know that $\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}$
Hence, we have
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}+\dfrac{x}{2} \right)=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
$\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right) \right)$
We have $x\in \left( 0,\dfrac{\pi }{2} \right)$
Hence, we have $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{4} \right)\Rightarrow \dfrac{x}{2}+\dfrac{\pi }{4}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)$
We know that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Using the above results, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)=\dfrac{\pi }{4}+\dfrac{x}{2}\forall x\in \left( 0,\dfrac{\pi }{2} \right)$
So, the correct answer is “Option D”.
Note: [1] A general way to find the values of ${{\tan }^{-1}}\tan x,{{\sin }^{-1}}\sin x$ etc is to put these function equal to y and hence arrive at equations of the form $\tan x=\tan y,\sin x=\sin y$ etc.
Finally use the fact that $\tan y=\tan x\Rightarrow y=n\pi +x\in \mathbb{Z}$ where n is suitable chose so that the value of y is in the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ the principal branch of tanx. This is a general method and the student should use this method when he forgets the definition of ${{\tan }^{-1}}\tan x$ as
\[{{\tan }^{-1}}\tan x=\left\{ \begin{matrix}
\vdots \\
\pi +x,x\in \left( -\dfrac{3\pi }{2},\dfrac{-\pi }{2} \right) \\
x,x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) \\
\pi -x,x\in \left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right) \\
\vdots \\
\end{matrix} \right.\]
Complete step by step answer:
Let $S=\sec x+\tan x$
We know that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$. Using these identities, we get
$S=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}$
Taking cosx as LCM, we get
$S=\dfrac{1+\sin x}{\cos x}$
We know that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$. Using these identities, we get
$S=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$
Put $\dfrac{\pi }{2}-x=t$, we get
$S=\dfrac{1+\cos t}{\sin t}$
We know that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Using the above identity, we get
$S=\dfrac{2{{\cos }^{2}}\dfrac{t}{2}}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}$
Cancelling the common factor $2\cos \dfrac{t}{2}$ from the numerator and denominator, we get
$S=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}$
We know that $\dfrac{\cos x}{\sin x}=\cot x$
Using the above identity, we get
$S=\cot \dfrac{t}{2}$
We know that $\cot x=\tan \left( \dfrac{\pi }{2}-x \right)$
Using the above identity, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{t}{2} \right)$
Reverting to original variable, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\dfrac{\pi }{2}-x}{2} \right)$
We know that $\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}$
Hence, we have
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}+\dfrac{x}{2} \right)=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
$\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right) \right)$
We have $x\in \left( 0,\dfrac{\pi }{2} \right)$
Hence, we have $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{4} \right)\Rightarrow \dfrac{x}{2}+\dfrac{\pi }{4}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)$
We know that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Using the above results, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)=\dfrac{\pi }{4}+\dfrac{x}{2}\forall x\in \left( 0,\dfrac{\pi }{2} \right)$
So, the correct answer is “Option D”.
Note: [1] A general way to find the values of ${{\tan }^{-1}}\tan x,{{\sin }^{-1}}\sin x$ etc is to put these function equal to y and hence arrive at equations of the form $\tan x=\tan y,\sin x=\sin y$ etc.
Finally use the fact that $\tan y=\tan x\Rightarrow y=n\pi +x\in \mathbb{Z}$ where n is suitable chose so that the value of y is in the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ the principal branch of tanx. This is a general method and the student should use this method when he forgets the definition of ${{\tan }^{-1}}\tan x$ as
\[{{\tan }^{-1}}\tan x=\left\{ \begin{matrix}
\vdots \\
\pi +x,x\in \left( -\dfrac{3\pi }{2},\dfrac{-\pi }{2} \right) \\
x,x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) \\
\pi -x,x\in \left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right) \\
\vdots \\
\end{matrix} \right.\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

