
The value of the expression ${{\tan }^{-1}}\left( \sec x+\tan x \right)$ in the interval $\left( 0,\dfrac{\pi }{2} \right)$ is
[a] $\dfrac{\pi }{4}-x$
[b] $x-\dfrac{\pi }{4}$
[c] $x+\dfrac{3\pi }{4}$
[d] $\dfrac{x}{2}+\dfrac{\pi }{4}$
Answer
524.4k+ views
Hint: Use the fact that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ and hence prove that $\tan x+\sec x=\dfrac{1+\sin x}{\cos x}$. Use the fact that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$ and hence prove that $\tan x+\sec x=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$. Put $\dfrac{\pi }{2}-x=t$ and use the fact that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$. Hence prove that $\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$. Use the fact that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and hence find the value of ${{\tan }^{-1}}\left( \sec x+\tan x \right),x\in \left( 0,\dfrac{\pi }{2} \right)$
Complete step by step answer:
Let $S=\sec x+\tan x$
We know that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$. Using these identities, we get
$S=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}$
Taking cosx as LCM, we get
$S=\dfrac{1+\sin x}{\cos x}$
We know that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$. Using these identities, we get
$S=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$
Put $\dfrac{\pi }{2}-x=t$, we get
$S=\dfrac{1+\cos t}{\sin t}$
We know that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Using the above identity, we get
$S=\dfrac{2{{\cos }^{2}}\dfrac{t}{2}}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}$
Cancelling the common factor $2\cos \dfrac{t}{2}$ from the numerator and denominator, we get
$S=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}$
We know that $\dfrac{\cos x}{\sin x}=\cot x$
Using the above identity, we get
$S=\cot \dfrac{t}{2}$
We know that $\cot x=\tan \left( \dfrac{\pi }{2}-x \right)$
Using the above identity, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{t}{2} \right)$
Reverting to original variable, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\dfrac{\pi }{2}-x}{2} \right)$
We know that $\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}$
Hence, we have
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}+\dfrac{x}{2} \right)=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
$\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right) \right)$
We have $x\in \left( 0,\dfrac{\pi }{2} \right)$
Hence, we have $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{4} \right)\Rightarrow \dfrac{x}{2}+\dfrac{\pi }{4}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)$
We know that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Using the above results, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)=\dfrac{\pi }{4}+\dfrac{x}{2}\forall x\in \left( 0,\dfrac{\pi }{2} \right)$
So, the correct answer is “Option D”.
Note: [1] A general way to find the values of ${{\tan }^{-1}}\tan x,{{\sin }^{-1}}\sin x$ etc is to put these function equal to y and hence arrive at equations of the form $\tan x=\tan y,\sin x=\sin y$ etc.
Finally use the fact that $\tan y=\tan x\Rightarrow y=n\pi +x\in \mathbb{Z}$ where n is suitable chose so that the value of y is in the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ the principal branch of tanx. This is a general method and the student should use this method when he forgets the definition of ${{\tan }^{-1}}\tan x$ as
\[{{\tan }^{-1}}\tan x=\left\{ \begin{matrix}
\vdots \\
\pi +x,x\in \left( -\dfrac{3\pi }{2},\dfrac{-\pi }{2} \right) \\
x,x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) \\
\pi -x,x\in \left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right) \\
\vdots \\
\end{matrix} \right.\]
Complete step by step answer:
Let $S=\sec x+\tan x$
We know that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$. Using these identities, we get
$S=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}$
Taking cosx as LCM, we get
$S=\dfrac{1+\sin x}{\cos x}$
We know that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$. Using these identities, we get
$S=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$
Put $\dfrac{\pi }{2}-x=t$, we get
$S=\dfrac{1+\cos t}{\sin t}$
We know that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Using the above identity, we get
$S=\dfrac{2{{\cos }^{2}}\dfrac{t}{2}}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}$
Cancelling the common factor $2\cos \dfrac{t}{2}$ from the numerator and denominator, we get
$S=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}$
We know that $\dfrac{\cos x}{\sin x}=\cot x$
Using the above identity, we get
$S=\cot \dfrac{t}{2}$
We know that $\cot x=\tan \left( \dfrac{\pi }{2}-x \right)$
Using the above identity, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{t}{2} \right)$
Reverting to original variable, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\dfrac{\pi }{2}-x}{2} \right)$
We know that $\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}$
Hence, we have
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}+\dfrac{x}{2} \right)=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
$\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right) \right)$
We have $x\in \left( 0,\dfrac{\pi }{2} \right)$
Hence, we have $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{4} \right)\Rightarrow \dfrac{x}{2}+\dfrac{\pi }{4}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)$
We know that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Using the above results, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)=\dfrac{\pi }{4}+\dfrac{x}{2}\forall x\in \left( 0,\dfrac{\pi }{2} \right)$
So, the correct answer is “Option D”.
Note: [1] A general way to find the values of ${{\tan }^{-1}}\tan x,{{\sin }^{-1}}\sin x$ etc is to put these function equal to y and hence arrive at equations of the form $\tan x=\tan y,\sin x=\sin y$ etc.
Finally use the fact that $\tan y=\tan x\Rightarrow y=n\pi +x\in \mathbb{Z}$ where n is suitable chose so that the value of y is in the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ the principal branch of tanx. This is a general method and the student should use this method when he forgets the definition of ${{\tan }^{-1}}\tan x$ as
\[{{\tan }^{-1}}\tan x=\left\{ \begin{matrix}
\vdots \\
\pi +x,x\in \left( -\dfrac{3\pi }{2},\dfrac{-\pi }{2} \right) \\
x,x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) \\
\pi -x,x\in \left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right) \\
\vdots \\
\end{matrix} \right.\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
