
The value of the expression ${{\tan }^{-1}}\left( \sec x+\tan x \right)$ in the interval $\left( 0,\dfrac{\pi }{2} \right)$ is
[a] $\dfrac{\pi }{4}-x$
[b] $x-\dfrac{\pi }{4}$
[c] $x+\dfrac{3\pi }{4}$
[d] $\dfrac{x}{2}+\dfrac{\pi }{4}$
Answer
586.8k+ views
Hint: Use the fact that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ and hence prove that $\tan x+\sec x=\dfrac{1+\sin x}{\cos x}$. Use the fact that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$ and hence prove that $\tan x+\sec x=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$. Put $\dfrac{\pi }{2}-x=t$ and use the fact that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$. Hence prove that $\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$. Use the fact that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ and hence find the value of ${{\tan }^{-1}}\left( \sec x+\tan x \right),x\in \left( 0,\dfrac{\pi }{2} \right)$
Complete step by step answer:
Let $S=\sec x+\tan x$
We know that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$. Using these identities, we get
$S=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}$
Taking cosx as LCM, we get
$S=\dfrac{1+\sin x}{\cos x}$
We know that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$. Using these identities, we get
$S=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$
Put $\dfrac{\pi }{2}-x=t$, we get
$S=\dfrac{1+\cos t}{\sin t}$
We know that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Using the above identity, we get
$S=\dfrac{2{{\cos }^{2}}\dfrac{t}{2}}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}$
Cancelling the common factor $2\cos \dfrac{t}{2}$ from the numerator and denominator, we get
$S=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}$
We know that $\dfrac{\cos x}{\sin x}=\cot x$
Using the above identity, we get
$S=\cot \dfrac{t}{2}$
We know that $\cot x=\tan \left( \dfrac{\pi }{2}-x \right)$
Using the above identity, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{t}{2} \right)$
Reverting to original variable, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\dfrac{\pi }{2}-x}{2} \right)$
We know that $\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}$
Hence, we have
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}+\dfrac{x}{2} \right)=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
$\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right) \right)$
We have $x\in \left( 0,\dfrac{\pi }{2} \right)$
Hence, we have $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{4} \right)\Rightarrow \dfrac{x}{2}+\dfrac{\pi }{4}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)$
We know that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Using the above results, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)=\dfrac{\pi }{4}+\dfrac{x}{2}\forall x\in \left( 0,\dfrac{\pi }{2} \right)$
So, the correct answer is “Option D”.
Note: [1] A general way to find the values of ${{\tan }^{-1}}\tan x,{{\sin }^{-1}}\sin x$ etc is to put these function equal to y and hence arrive at equations of the form $\tan x=\tan y,\sin x=\sin y$ etc.
Finally use the fact that $\tan y=\tan x\Rightarrow y=n\pi +x\in \mathbb{Z}$ where n is suitable chose so that the value of y is in the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ the principal branch of tanx. This is a general method and the student should use this method when he forgets the definition of ${{\tan }^{-1}}\tan x$ as
\[{{\tan }^{-1}}\tan x=\left\{ \begin{matrix}
\vdots \\
\pi +x,x\in \left( -\dfrac{3\pi }{2},\dfrac{-\pi }{2} \right) \\
x,x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) \\
\pi -x,x\in \left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right) \\
\vdots \\
\end{matrix} \right.\]
Complete step by step answer:
Let $S=\sec x+\tan x$
We know that $\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$. Using these identities, we get
$S=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}$
Taking cosx as LCM, we get
$S=\dfrac{1+\sin x}{\cos x}$
We know that $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$ and $\cos x=\sin \left( \dfrac{\pi }{2}-x \right)$. Using these identities, we get
$S=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}$
Put $\dfrac{\pi }{2}-x=t$, we get
$S=\dfrac{1+\cos t}{\sin t}$
We know that $1+\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
Using the above identity, we get
$S=\dfrac{2{{\cos }^{2}}\dfrac{t}{2}}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}$
Cancelling the common factor $2\cos \dfrac{t}{2}$ from the numerator and denominator, we get
$S=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}$
We know that $\dfrac{\cos x}{\sin x}=\cot x$
Using the above identity, we get
$S=\cot \dfrac{t}{2}$
We know that $\cot x=\tan \left( \dfrac{\pi }{2}-x \right)$
Using the above identity, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{t}{2} \right)$
Reverting to original variable, we get
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\dfrac{\pi }{2}-x}{2} \right)$
We know that $\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}$
Hence, we have
$S=\tan \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}+\dfrac{x}{2} \right)=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
$\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)$
Hence, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right) \right)$
We have $x\in \left( 0,\dfrac{\pi }{2} \right)$
Hence, we have $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{4} \right)\Rightarrow \dfrac{x}{2}+\dfrac{\pi }{4}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)$
We know that ${{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Using the above results, we have
${{\tan }^{-1}}\left( \sec x+\tan x \right)=\dfrac{\pi }{4}+\dfrac{x}{2}\forall x\in \left( 0,\dfrac{\pi }{2} \right)$
So, the correct answer is “Option D”.
Note: [1] A general way to find the values of ${{\tan }^{-1}}\tan x,{{\sin }^{-1}}\sin x$ etc is to put these function equal to y and hence arrive at equations of the form $\tan x=\tan y,\sin x=\sin y$ etc.
Finally use the fact that $\tan y=\tan x\Rightarrow y=n\pi +x\in \mathbb{Z}$ where n is suitable chose so that the value of y is in the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ the principal branch of tanx. This is a general method and the student should use this method when he forgets the definition of ${{\tan }^{-1}}\tan x$ as
\[{{\tan }^{-1}}\tan x=\left\{ \begin{matrix}
\vdots \\
\pi +x,x\in \left( -\dfrac{3\pi }{2},\dfrac{-\pi }{2} \right) \\
x,x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) \\
\pi -x,x\in \left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right) \\
\vdots \\
\end{matrix} \right.\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

