
The value of the expression ${}^{n+1}{{C}_{2}}+2\left[ {}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}} \right]$ is $\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$. Find $k+m+p+h$.
Answer
431.1k+ views
Hint: First, we must reduce the expression ${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}$ by using the property ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ and the fact that ${}^{n}{{C}_{n}}=1$. Then, we can evaluate the given equation using the definition ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. By comparing, we can find the value of k, m, p and h.
Complete step-by-step solution:
We all know very well that the combination of r distinct objects from a set of n distinct objects is defined as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
For r = n, we can write that ${}^{n}{{C}_{n}}=\dfrac{n!}{n!\left( n-n \right)!}$.
Hence, we get ${}^{n}{{C}_{n}}=\dfrac{1}{0!}$.
We know that the factorial of 0 is defined as 1. Thus, we can write that
${}^{n}{{C}_{n}}=1$.
Thus, we now have ${}^{2}{{C}_{2}}={}^{3}{{C}_{3}}=1$.
Hence, we can write
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{3}{{C}_{3}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( i \right)$
We know the property that
${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$.
Hence, we can say that ${}^{3}{{C}_{2}}+{}^{3}{{C}_{3}}={}^{4}{{C}_{3}}$.
Thus, using the above value on the right hand side of equation (i), we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{4}{{C}_{3}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( ii \right)$
Using the same property again, we can write ${}^{4}{{C}_{2}}+{}^{4}{{C}_{3}}={}^{5}{{C}_{3}}$.
Thus, using the above value on the right hand side of equation (ii), we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{5}{{C}_{3}}+{}^{5}{{C}_{2}}+...+{}^{n}{{C}_{2}}$
We can reduce the above equation in the same way, to get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n}{{C}_{3}}+{}^{n}{{C}_{2}}$
And hence, we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n+1}{{C}_{3}}$.
So, we can write the given equation as
${}^{n+1}{{C}_{2}}+2\left[ {}^{n+1}{{C}_{3}} \right]=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
We can write the above equation as
${}^{n+1}{{C}_{2}}+{}^{n+1}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
Using the property ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ on the left hand side of above equation, we can write
${}^{n+2}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
Using the definition of combinations, we can write
$\dfrac{\left( n+2 \right)!}{3!\left( n+2-3 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
On simplification, we get
$\dfrac{\left( n+2 \right)!}{3!\left( n-1 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
Hence, we can now write
$\dfrac{\left( n+2 \right)\left( n+1 \right)n}{6}+\dfrac{\left( n+1 \right)n\left( n-1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
We can simplify this equation as
$\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
On comparing, we can write
$\begin{align}
& k=1 \\
& m=1 \\
& p=2 \\
& h=6 \\
\end{align}$
Thus, $k+m+p+h=1+1+2+6$.
Hence, the value of $k+m+p+h$ is 10.
Note: We must remember the property of combination, ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ by heart, as it is very easy to make a mistake in writing this property. Also, we must not try to simplify the given equation by solving each combination separately, as this will make the equation much more complex.
Complete step-by-step solution:
We all know very well that the combination of r distinct objects from a set of n distinct objects is defined as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
For r = n, we can write that ${}^{n}{{C}_{n}}=\dfrac{n!}{n!\left( n-n \right)!}$.
Hence, we get ${}^{n}{{C}_{n}}=\dfrac{1}{0!}$.
We know that the factorial of 0 is defined as 1. Thus, we can write that
${}^{n}{{C}_{n}}=1$.
Thus, we now have ${}^{2}{{C}_{2}}={}^{3}{{C}_{3}}=1$.
Hence, we can write
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{3}{{C}_{3}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( i \right)$
We know the property that
${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$.
Hence, we can say that ${}^{3}{{C}_{2}}+{}^{3}{{C}_{3}}={}^{4}{{C}_{3}}$.
Thus, using the above value on the right hand side of equation (i), we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{4}{{C}_{3}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( ii \right)$
Using the same property again, we can write ${}^{4}{{C}_{2}}+{}^{4}{{C}_{3}}={}^{5}{{C}_{3}}$.
Thus, using the above value on the right hand side of equation (ii), we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{5}{{C}_{3}}+{}^{5}{{C}_{2}}+...+{}^{n}{{C}_{2}}$
We can reduce the above equation in the same way, to get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n}{{C}_{3}}+{}^{n}{{C}_{2}}$
And hence, we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n+1}{{C}_{3}}$.
So, we can write the given equation as
${}^{n+1}{{C}_{2}}+2\left[ {}^{n+1}{{C}_{3}} \right]=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
We can write the above equation as
${}^{n+1}{{C}_{2}}+{}^{n+1}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
Using the property ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ on the left hand side of above equation, we can write
${}^{n+2}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
Using the definition of combinations, we can write
$\dfrac{\left( n+2 \right)!}{3!\left( n+2-3 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
On simplification, we get
$\dfrac{\left( n+2 \right)!}{3!\left( n-1 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
Hence, we can now write
$\dfrac{\left( n+2 \right)\left( n+1 \right)n}{6}+\dfrac{\left( n+1 \right)n\left( n-1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
We can simplify this equation as
$\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
On comparing, we can write
$\begin{align}
& k=1 \\
& m=1 \\
& p=2 \\
& h=6 \\
\end{align}$
Thus, $k+m+p+h=1+1+2+6$.
Hence, the value of $k+m+p+h$ is 10.
Note: We must remember the property of combination, ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ by heart, as it is very easy to make a mistake in writing this property. Also, we must not try to simplify the given equation by solving each combination separately, as this will make the equation much more complex.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
