Answer
Verified
391.2k+ views
Hint: First, we must reduce the expression ${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}$ by using the property ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ and the fact that ${}^{n}{{C}_{n}}=1$. Then, we can evaluate the given equation using the definition ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. By comparing, we can find the value of k, m, p and h.
Complete step-by-step solution:
We all know very well that the combination of r distinct objects from a set of n distinct objects is defined as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
For r = n, we can write that ${}^{n}{{C}_{n}}=\dfrac{n!}{n!\left( n-n \right)!}$.
Hence, we get ${}^{n}{{C}_{n}}=\dfrac{1}{0!}$.
We know that the factorial of 0 is defined as 1. Thus, we can write that
${}^{n}{{C}_{n}}=1$.
Thus, we now have ${}^{2}{{C}_{2}}={}^{3}{{C}_{3}}=1$.
Hence, we can write
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{3}{{C}_{3}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( i \right)$
We know the property that
${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$.
Hence, we can say that ${}^{3}{{C}_{2}}+{}^{3}{{C}_{3}}={}^{4}{{C}_{3}}$.
Thus, using the above value on the right hand side of equation (i), we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{4}{{C}_{3}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( ii \right)$
Using the same property again, we can write ${}^{4}{{C}_{2}}+{}^{4}{{C}_{3}}={}^{5}{{C}_{3}}$.
Thus, using the above value on the right hand side of equation (ii), we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{5}{{C}_{3}}+{}^{5}{{C}_{2}}+...+{}^{n}{{C}_{2}}$
We can reduce the above equation in the same way, to get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n}{{C}_{3}}+{}^{n}{{C}_{2}}$
And hence, we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n+1}{{C}_{3}}$.
So, we can write the given equation as
${}^{n+1}{{C}_{2}}+2\left[ {}^{n+1}{{C}_{3}} \right]=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
We can write the above equation as
${}^{n+1}{{C}_{2}}+{}^{n+1}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
Using the property ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ on the left hand side of above equation, we can write
${}^{n+2}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
Using the definition of combinations, we can write
$\dfrac{\left( n+2 \right)!}{3!\left( n+2-3 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
On simplification, we get
$\dfrac{\left( n+2 \right)!}{3!\left( n-1 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
Hence, we can now write
$\dfrac{\left( n+2 \right)\left( n+1 \right)n}{6}+\dfrac{\left( n+1 \right)n\left( n-1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
We can simplify this equation as
$\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
On comparing, we can write
$\begin{align}
& k=1 \\
& m=1 \\
& p=2 \\
& h=6 \\
\end{align}$
Thus, $k+m+p+h=1+1+2+6$.
Hence, the value of $k+m+p+h$ is 10.
Note: We must remember the property of combination, ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ by heart, as it is very easy to make a mistake in writing this property. Also, we must not try to simplify the given equation by solving each combination separately, as this will make the equation much more complex.
Complete step-by-step solution:
We all know very well that the combination of r distinct objects from a set of n distinct objects is defined as ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
For r = n, we can write that ${}^{n}{{C}_{n}}=\dfrac{n!}{n!\left( n-n \right)!}$.
Hence, we get ${}^{n}{{C}_{n}}=\dfrac{1}{0!}$.
We know that the factorial of 0 is defined as 1. Thus, we can write that
${}^{n}{{C}_{n}}=1$.
Thus, we now have ${}^{2}{{C}_{2}}={}^{3}{{C}_{3}}=1$.
Hence, we can write
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{3}{{C}_{3}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( i \right)$
We know the property that
${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$.
Hence, we can say that ${}^{3}{{C}_{2}}+{}^{3}{{C}_{3}}={}^{4}{{C}_{3}}$.
Thus, using the above value on the right hand side of equation (i), we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{4}{{C}_{3}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( ii \right)$
Using the same property again, we can write ${}^{4}{{C}_{2}}+{}^{4}{{C}_{3}}={}^{5}{{C}_{3}}$.
Thus, using the above value on the right hand side of equation (ii), we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{5}{{C}_{3}}+{}^{5}{{C}_{2}}+...+{}^{n}{{C}_{2}}$
We can reduce the above equation in the same way, to get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n}{{C}_{3}}+{}^{n}{{C}_{2}}$
And hence, we get
${}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n+1}{{C}_{3}}$.
So, we can write the given equation as
${}^{n+1}{{C}_{2}}+2\left[ {}^{n+1}{{C}_{3}} \right]=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
We can write the above equation as
${}^{n+1}{{C}_{2}}+{}^{n+1}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
Using the property ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ on the left hand side of above equation, we can write
${}^{n+2}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
Using the definition of combinations, we can write
$\dfrac{\left( n+2 \right)!}{3!\left( n+2-3 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
On simplification, we get
$\dfrac{\left( n+2 \right)!}{3!\left( n-1 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
Hence, we can now write
$\dfrac{\left( n+2 \right)\left( n+1 \right)n}{6}+\dfrac{\left( n+1 \right)n\left( n-1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$.
We can simplify this equation as
$\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}$
On comparing, we can write
$\begin{align}
& k=1 \\
& m=1 \\
& p=2 \\
& h=6 \\
\end{align}$
Thus, $k+m+p+h=1+1+2+6$.
Hence, the value of $k+m+p+h$ is 10.
Note: We must remember the property of combination, ${}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}$ by heart, as it is very easy to make a mistake in writing this property. Also, we must not try to simplify the given equation by solving each combination separately, as this will make the equation much more complex.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE