
The value of the expression $\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}}$ is
(A)$\dfrac{1}{2}$
(B)1
(C) 2
(D) None of these
Answer
593.1k+ views
Hint- To solve this question we will use trigonometric identities such as $\sin (90 - \theta ) = \cos \theta {\text{ and cosA - cosB = 2sin(}}\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2})$
Complete step-by-step solution -
Given expression is $\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}}............................(1)$
As we know that
$
\sin (90 - \theta ) = \cos \theta {\text{ }} \\
{\text{cosA - cosB = 2sin(}}\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2}) \\
$
From equation (1) write the angles of sin as a sum or difference of two angles such as ${70^0} = \dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ and 1}}{{\text{0}}^0} = \dfrac{{{{80}^0} - {{60}^0}}}{2}$ , we get
$ = \dfrac{{1 - 4\sin \left( {\dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ }}} \right)\sin \left( {\dfrac{{{{80}^0} - {{60}^0}}}{2}} \right)}}{{2\sin ({{90}^0} - {{10}^0})}}$
Now, using the formulas mentioned above, we get
$ = \dfrac{{1 - 2[\cos \left( {{\text{6}}{{\text{0}}^0}} \right) - \cos \left( {{{80}^0}} \right)]}}{{2\cos ({{80}^0})}}$
As we know that $\cos {60^0} = \dfrac{1}{2}$ substituting this value in the above equation, we get
$
= \dfrac{{1 - 2 \times \dfrac{1}{2} + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= \dfrac{{1 - 1 + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= \dfrac{{2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= 1 \\
$
So, the value of the given expression is 1.
Hence, the correct answer is option B.
Note- To solve this question, we used the trigonometric identities and some manipulation. Whenever we have an unknown or random angle in the problem, whose trigonometric values are unknown, try to manipulate some angle by using trigonometric identities in order to cancel that term or to bring the angle in some known value. Remember the trigonometric identities.
Complete step-by-step solution -
Given expression is $\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}}............................(1)$
As we know that
$
\sin (90 - \theta ) = \cos \theta {\text{ }} \\
{\text{cosA - cosB = 2sin(}}\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2}) \\
$
From equation (1) write the angles of sin as a sum or difference of two angles such as ${70^0} = \dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ and 1}}{{\text{0}}^0} = \dfrac{{{{80}^0} - {{60}^0}}}{2}$ , we get
$ = \dfrac{{1 - 4\sin \left( {\dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ }}} \right)\sin \left( {\dfrac{{{{80}^0} - {{60}^0}}}{2}} \right)}}{{2\sin ({{90}^0} - {{10}^0})}}$
Now, using the formulas mentioned above, we get
$ = \dfrac{{1 - 2[\cos \left( {{\text{6}}{{\text{0}}^0}} \right) - \cos \left( {{{80}^0}} \right)]}}{{2\cos ({{80}^0})}}$
As we know that $\cos {60^0} = \dfrac{1}{2}$ substituting this value in the above equation, we get
$
= \dfrac{{1 - 2 \times \dfrac{1}{2} + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= \dfrac{{1 - 1 + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= \dfrac{{2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= 1 \\
$
So, the value of the given expression is 1.
Hence, the correct answer is option B.
Note- To solve this question, we used the trigonometric identities and some manipulation. Whenever we have an unknown or random angle in the problem, whose trigonometric values are unknown, try to manipulate some angle by using trigonometric identities in order to cancel that term or to bring the angle in some known value. Remember the trigonometric identities.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

