
The value of the expression $\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}}$ is
(A)$\dfrac{1}{2}$
(B)1
(C) 2
(D) None of these
Answer
604.8k+ views
Hint- To solve this question we will use trigonometric identities such as $\sin (90 - \theta ) = \cos \theta {\text{ and cosA - cosB = 2sin(}}\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2})$
Complete step-by-step solution -
Given expression is $\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}}............................(1)$
As we know that
$
\sin (90 - \theta ) = \cos \theta {\text{ }} \\
{\text{cosA - cosB = 2sin(}}\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2}) \\
$
From equation (1) write the angles of sin as a sum or difference of two angles such as ${70^0} = \dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ and 1}}{{\text{0}}^0} = \dfrac{{{{80}^0} - {{60}^0}}}{2}$ , we get
$ = \dfrac{{1 - 4\sin \left( {\dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ }}} \right)\sin \left( {\dfrac{{{{80}^0} - {{60}^0}}}{2}} \right)}}{{2\sin ({{90}^0} - {{10}^0})}}$
Now, using the formulas mentioned above, we get
$ = \dfrac{{1 - 2[\cos \left( {{\text{6}}{{\text{0}}^0}} \right) - \cos \left( {{{80}^0}} \right)]}}{{2\cos ({{80}^0})}}$
As we know that $\cos {60^0} = \dfrac{1}{2}$ substituting this value in the above equation, we get
$
= \dfrac{{1 - 2 \times \dfrac{1}{2} + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= \dfrac{{1 - 1 + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= \dfrac{{2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= 1 \\
$
So, the value of the given expression is 1.
Hence, the correct answer is option B.
Note- To solve this question, we used the trigonometric identities and some manipulation. Whenever we have an unknown or random angle in the problem, whose trigonometric values are unknown, try to manipulate some angle by using trigonometric identities in order to cancel that term or to bring the angle in some known value. Remember the trigonometric identities.
Complete step-by-step solution -
Given expression is $\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}}............................(1)$
As we know that
$
\sin (90 - \theta ) = \cos \theta {\text{ }} \\
{\text{cosA - cosB = 2sin(}}\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2}) \\
$
From equation (1) write the angles of sin as a sum or difference of two angles such as ${70^0} = \dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ and 1}}{{\text{0}}^0} = \dfrac{{{{80}^0} - {{60}^0}}}{2}$ , we get
$ = \dfrac{{1 - 4\sin \left( {\dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ }}} \right)\sin \left( {\dfrac{{{{80}^0} - {{60}^0}}}{2}} \right)}}{{2\sin ({{90}^0} - {{10}^0})}}$
Now, using the formulas mentioned above, we get
$ = \dfrac{{1 - 2[\cos \left( {{\text{6}}{{\text{0}}^0}} \right) - \cos \left( {{{80}^0}} \right)]}}{{2\cos ({{80}^0})}}$
As we know that $\cos {60^0} = \dfrac{1}{2}$ substituting this value in the above equation, we get
$
= \dfrac{{1 - 2 \times \dfrac{1}{2} + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= \dfrac{{1 - 1 + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= \dfrac{{2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\
= 1 \\
$
So, the value of the given expression is 1.
Hence, the correct answer is option B.
Note- To solve this question, we used the trigonometric identities and some manipulation. Whenever we have an unknown or random angle in the problem, whose trigonometric values are unknown, try to manipulate some angle by using trigonometric identities in order to cancel that term or to bring the angle in some known value. Remember the trigonometric identities.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

