
The value of the expression $1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right),$ where ω is an imaginary cube root of unity is
Answer
578.1k+ views
Hint: At first we’ll find the general term of the given expression. Then we’ll write it as
${S_n} = \sum\limits_{r = 1}^n {{T_r}} $, where ${T_r} = r(r + 1 - \omega )(r + 1 - {\omega ^2})$ , then also we should always check the number of terms the expression is containing as in the given expression we have (n-1) terms, then by simplifying further we get our answer.
Complete step-by-step answer:
Given data: the expression $1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right)$
From the given expression we can say that,
${r^{th}}$ term or ${T_r} = r(r + 1 - \omega )(r + 1 - {\omega ^2})$
On expanding the right-hand side
$ = r({r^2} + r - r{\omega ^2} + r + 1 - {\omega ^2} - r\omega - \omega + {\omega ^3})$
$ = r\left[ {{r^2} + r(1 - {\omega ^2} - \omega + 1) + 1 - {\omega ^2} - \omega + {\omega ^3}} \right]$
We know that the sum of the cube root of unity is zero
i.e.$1 + \omega + {\omega ^2} = 0$
$ \Rightarrow 1 = - \omega - {\omega ^2}$
And ${\omega ^3} = 1$
$\therefore r\left[ {{r^2} + r(1 - {\omega ^2} - \omega + 1) + 1 - {\omega ^2} - \omega + {\omega ^3}} \right] = r\left[ {{r^2} + r(1 + 1 + 1) + 1 + 1 + 1} \right]$
$ = r\left[ {{r^2} + 3r + 3} \right]$
Now, opening the brackets
\[r\left[ {{r^2} + 3r + 3} \right] = {r^3} + 3{r^2} + 3r\]
Now we can say that,
$1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right) = \sum\limits_{r = 1}^{n - 1} {{r^3}} + 3{r^2} + 3r$
It is well known that,
\[\sum\limits_{r = 1}^n {(A + B + C} ) = \sum\limits_{r = 1}^n A + \sum\limits_{r = 1}^n B + \sum\limits_{r = 1}^n C \]
$\therefore \sum\limits_{r = 1}^n {{r^3}} + 3{r^2} + 3r = \sum\limits_{r = 1}^n {{r^3}} + 3\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r $
Now, as we all know
\[
\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\
\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
\]
\[\therefore \sum\limits_{r = 1}^{n - 1} {{r^3}} + 3\sum\limits_{r = 1}^{n - 1} {{r^2}} + 3\sum\limits_{r = 1}^{n - 1} r = {\left( {\dfrac{{(n - 1)n}}{2}} \right)^2} + 3\dfrac{{(n - 1)n\left( {2(n - 1) + 1} \right)}}{6} + 3\dfrac{{(n - 1)n}}{2}\]
Now, on solving the left-hand side
i.e.\[{\left( {\dfrac{{(n - 1)n}}{2}} \right)^2} + 3\dfrac{{(n - 1)n\left( {2(n - 1) + 1} \right)}}{6} + 3\dfrac{{(n - 1)n}}{2} = \dfrac{{{{(n - 1)}^2}{n^2}}}{4} + \dfrac{{(n - 1)n\left( {2n - 1} \right)}}{2} + \dfrac{{3(n - 1)n}}{2}\]
using ${(a - b)^2} = {a^2} + {b^2} - 2ab$ and simplifying the brackets,
\[ = \dfrac{{\left( {{n^2} + 1 - 2n} \right){n^2}}}{4} + \dfrac{{n\left( {2{n^2} - n - 2n + 1} \right)}}{2} + \dfrac{{3{n^2} - 3n}}{2}\]
Again simplifying the brackets further, we get,
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - {n^2} - 2{n^2} + n}}{2} + \dfrac{{3{n^2} - 3n}}{2}\]
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - {n^2} - 2{n^2} + n + 3{n^2} - 3n}}{2}\]
Now adding the like terms,
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - 2n}}{2}\]
Now, adding both the terms by taking LCM
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3} + 4{n^3} - 4n}}{4}\]
Now adding the like terms
\[ = \dfrac{{{n^4} + 2{n^3} + {n^2} - 4n}}{4}\]
Taking n common from every term
\[ = \dfrac{n}{4}\left( {{n^3} + 2{n^2} + n - 4} \right)\]
$\therefore 1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right) = \dfrac{n}{4}\left( {{n^3} + 2{n^2} + n - 4} \right)$
Note: In this question, we have given the cube root of unity. There are a total 3 cube root of unity namely $1,\omega ,{\omega ^2}$
Where $\omega ,{\omega ^2}$are the imaginary roots having value as
$\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ , and
${\omega ^2} = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}$
From the values of $\omega ,{\omega ^2}$, we can say that sum of cube roots of unity is zero
i.e. \[1 + \omega + {\omega ^2} = 1 - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}\]
\[ = 0\]
${S_n} = \sum\limits_{r = 1}^n {{T_r}} $, where ${T_r} = r(r + 1 - \omega )(r + 1 - {\omega ^2})$ , then also we should always check the number of terms the expression is containing as in the given expression we have (n-1) terms, then by simplifying further we get our answer.
Complete step-by-step answer:
Given data: the expression $1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right)$
From the given expression we can say that,
${r^{th}}$ term or ${T_r} = r(r + 1 - \omega )(r + 1 - {\omega ^2})$
On expanding the right-hand side
$ = r({r^2} + r - r{\omega ^2} + r + 1 - {\omega ^2} - r\omega - \omega + {\omega ^3})$
$ = r\left[ {{r^2} + r(1 - {\omega ^2} - \omega + 1) + 1 - {\omega ^2} - \omega + {\omega ^3}} \right]$
We know that the sum of the cube root of unity is zero
i.e.$1 + \omega + {\omega ^2} = 0$
$ \Rightarrow 1 = - \omega - {\omega ^2}$
And ${\omega ^3} = 1$
$\therefore r\left[ {{r^2} + r(1 - {\omega ^2} - \omega + 1) + 1 - {\omega ^2} - \omega + {\omega ^3}} \right] = r\left[ {{r^2} + r(1 + 1 + 1) + 1 + 1 + 1} \right]$
$ = r\left[ {{r^2} + 3r + 3} \right]$
Now, opening the brackets
\[r\left[ {{r^2} + 3r + 3} \right] = {r^3} + 3{r^2} + 3r\]
Now we can say that,
$1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right) = \sum\limits_{r = 1}^{n - 1} {{r^3}} + 3{r^2} + 3r$
It is well known that,
\[\sum\limits_{r = 1}^n {(A + B + C} ) = \sum\limits_{r = 1}^n A + \sum\limits_{r = 1}^n B + \sum\limits_{r = 1}^n C \]
$\therefore \sum\limits_{r = 1}^n {{r^3}} + 3{r^2} + 3r = \sum\limits_{r = 1}^n {{r^3}} + 3\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r $
Now, as we all know
\[
\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\
\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
\]
\[\therefore \sum\limits_{r = 1}^{n - 1} {{r^3}} + 3\sum\limits_{r = 1}^{n - 1} {{r^2}} + 3\sum\limits_{r = 1}^{n - 1} r = {\left( {\dfrac{{(n - 1)n}}{2}} \right)^2} + 3\dfrac{{(n - 1)n\left( {2(n - 1) + 1} \right)}}{6} + 3\dfrac{{(n - 1)n}}{2}\]
Now, on solving the left-hand side
i.e.\[{\left( {\dfrac{{(n - 1)n}}{2}} \right)^2} + 3\dfrac{{(n - 1)n\left( {2(n - 1) + 1} \right)}}{6} + 3\dfrac{{(n - 1)n}}{2} = \dfrac{{{{(n - 1)}^2}{n^2}}}{4} + \dfrac{{(n - 1)n\left( {2n - 1} \right)}}{2} + \dfrac{{3(n - 1)n}}{2}\]
using ${(a - b)^2} = {a^2} + {b^2} - 2ab$ and simplifying the brackets,
\[ = \dfrac{{\left( {{n^2} + 1 - 2n} \right){n^2}}}{4} + \dfrac{{n\left( {2{n^2} - n - 2n + 1} \right)}}{2} + \dfrac{{3{n^2} - 3n}}{2}\]
Again simplifying the brackets further, we get,
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - {n^2} - 2{n^2} + n}}{2} + \dfrac{{3{n^2} - 3n}}{2}\]
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - {n^2} - 2{n^2} + n + 3{n^2} - 3n}}{2}\]
Now adding the like terms,
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - 2n}}{2}\]
Now, adding both the terms by taking LCM
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3} + 4{n^3} - 4n}}{4}\]
Now adding the like terms
\[ = \dfrac{{{n^4} + 2{n^3} + {n^2} - 4n}}{4}\]
Taking n common from every term
\[ = \dfrac{n}{4}\left( {{n^3} + 2{n^2} + n - 4} \right)\]
$\therefore 1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right) = \dfrac{n}{4}\left( {{n^3} + 2{n^2} + n - 4} \right)$
Note: In this question, we have given the cube root of unity. There are a total 3 cube root of unity namely $1,\omega ,{\omega ^2}$
Where $\omega ,{\omega ^2}$are the imaginary roots having value as
$\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ , and
${\omega ^2} = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}$
From the values of $\omega ,{\omega ^2}$, we can say that sum of cube roots of unity is zero
i.e. \[1 + \omega + {\omega ^2} = 1 - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}\]
\[ = 0\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

