Answer
Verified
445.8k+ views
Hint: At first we’ll find the general term of the given expression. Then we’ll write it as
${S_n} = \sum\limits_{r = 1}^n {{T_r}} $, where ${T_r} = r(r + 1 - \omega )(r + 1 - {\omega ^2})$ , then also we should always check the number of terms the expression is containing as in the given expression we have (n-1) terms, then by simplifying further we get our answer.
Complete step-by-step answer:
Given data: the expression $1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right)$
From the given expression we can say that,
${r^{th}}$ term or ${T_r} = r(r + 1 - \omega )(r + 1 - {\omega ^2})$
On expanding the right-hand side
$ = r({r^2} + r - r{\omega ^2} + r + 1 - {\omega ^2} - r\omega - \omega + {\omega ^3})$
$ = r\left[ {{r^2} + r(1 - {\omega ^2} - \omega + 1) + 1 - {\omega ^2} - \omega + {\omega ^3}} \right]$
We know that the sum of the cube root of unity is zero
i.e.$1 + \omega + {\omega ^2} = 0$
$ \Rightarrow 1 = - \omega - {\omega ^2}$
And ${\omega ^3} = 1$
$\therefore r\left[ {{r^2} + r(1 - {\omega ^2} - \omega + 1) + 1 - {\omega ^2} - \omega + {\omega ^3}} \right] = r\left[ {{r^2} + r(1 + 1 + 1) + 1 + 1 + 1} \right]$
$ = r\left[ {{r^2} + 3r + 3} \right]$
Now, opening the brackets
\[r\left[ {{r^2} + 3r + 3} \right] = {r^3} + 3{r^2} + 3r\]
Now we can say that,
$1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right) = \sum\limits_{r = 1}^{n - 1} {{r^3}} + 3{r^2} + 3r$
It is well known that,
\[\sum\limits_{r = 1}^n {(A + B + C} ) = \sum\limits_{r = 1}^n A + \sum\limits_{r = 1}^n B + \sum\limits_{r = 1}^n C \]
$\therefore \sum\limits_{r = 1}^n {{r^3}} + 3{r^2} + 3r = \sum\limits_{r = 1}^n {{r^3}} + 3\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r $
Now, as we all know
\[
\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\
\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
\]
\[\therefore \sum\limits_{r = 1}^{n - 1} {{r^3}} + 3\sum\limits_{r = 1}^{n - 1} {{r^2}} + 3\sum\limits_{r = 1}^{n - 1} r = {\left( {\dfrac{{(n - 1)n}}{2}} \right)^2} + 3\dfrac{{(n - 1)n\left( {2(n - 1) + 1} \right)}}{6} + 3\dfrac{{(n - 1)n}}{2}\]
Now, on solving the left-hand side
i.e.\[{\left( {\dfrac{{(n - 1)n}}{2}} \right)^2} + 3\dfrac{{(n - 1)n\left( {2(n - 1) + 1} \right)}}{6} + 3\dfrac{{(n - 1)n}}{2} = \dfrac{{{{(n - 1)}^2}{n^2}}}{4} + \dfrac{{(n - 1)n\left( {2n - 1} \right)}}{2} + \dfrac{{3(n - 1)n}}{2}\]
using ${(a - b)^2} = {a^2} + {b^2} - 2ab$ and simplifying the brackets,
\[ = \dfrac{{\left( {{n^2} + 1 - 2n} \right){n^2}}}{4} + \dfrac{{n\left( {2{n^2} - n - 2n + 1} \right)}}{2} + \dfrac{{3{n^2} - 3n}}{2}\]
Again simplifying the brackets further, we get,
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - {n^2} - 2{n^2} + n}}{2} + \dfrac{{3{n^2} - 3n}}{2}\]
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - {n^2} - 2{n^2} + n + 3{n^2} - 3n}}{2}\]
Now adding the like terms,
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - 2n}}{2}\]
Now, adding both the terms by taking LCM
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3} + 4{n^3} - 4n}}{4}\]
Now adding the like terms
\[ = \dfrac{{{n^4} + 2{n^3} + {n^2} - 4n}}{4}\]
Taking n common from every term
\[ = \dfrac{n}{4}\left( {{n^3} + 2{n^2} + n - 4} \right)\]
$\therefore 1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right) = \dfrac{n}{4}\left( {{n^3} + 2{n^2} + n - 4} \right)$
Note: In this question, we have given the cube root of unity. There are a total 3 cube root of unity namely $1,\omega ,{\omega ^2}$
Where $\omega ,{\omega ^2}$are the imaginary roots having value as
$\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ , and
${\omega ^2} = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}$
From the values of $\omega ,{\omega ^2}$, we can say that sum of cube roots of unity is zero
i.e. \[1 + \omega + {\omega ^2} = 1 - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}\]
\[ = 0\]
${S_n} = \sum\limits_{r = 1}^n {{T_r}} $, where ${T_r} = r(r + 1 - \omega )(r + 1 - {\omega ^2})$ , then also we should always check the number of terms the expression is containing as in the given expression we have (n-1) terms, then by simplifying further we get our answer.
Complete step-by-step answer:
Given data: the expression $1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right)$
From the given expression we can say that,
${r^{th}}$ term or ${T_r} = r(r + 1 - \omega )(r + 1 - {\omega ^2})$
On expanding the right-hand side
$ = r({r^2} + r - r{\omega ^2} + r + 1 - {\omega ^2} - r\omega - \omega + {\omega ^3})$
$ = r\left[ {{r^2} + r(1 - {\omega ^2} - \omega + 1) + 1 - {\omega ^2} - \omega + {\omega ^3}} \right]$
We know that the sum of the cube root of unity is zero
i.e.$1 + \omega + {\omega ^2} = 0$
$ \Rightarrow 1 = - \omega - {\omega ^2}$
And ${\omega ^3} = 1$
$\therefore r\left[ {{r^2} + r(1 - {\omega ^2} - \omega + 1) + 1 - {\omega ^2} - \omega + {\omega ^3}} \right] = r\left[ {{r^2} + r(1 + 1 + 1) + 1 + 1 + 1} \right]$
$ = r\left[ {{r^2} + 3r + 3} \right]$
Now, opening the brackets
\[r\left[ {{r^2} + 3r + 3} \right] = {r^3} + 3{r^2} + 3r\]
Now we can say that,
$1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right) = \sum\limits_{r = 1}^{n - 1} {{r^3}} + 3{r^2} + 3r$
It is well known that,
\[\sum\limits_{r = 1}^n {(A + B + C} ) = \sum\limits_{r = 1}^n A + \sum\limits_{r = 1}^n B + \sum\limits_{r = 1}^n C \]
$\therefore \sum\limits_{r = 1}^n {{r^3}} + 3{r^2} + 3r = \sum\limits_{r = 1}^n {{r^3}} + 3\sum\limits_{r = 1}^n {{r^2}} + 3\sum\limits_{r = 1}^n r $
Now, as we all know
\[
\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\
\sum\limits_{r = 1}^n {{r^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
\]
\[\therefore \sum\limits_{r = 1}^{n - 1} {{r^3}} + 3\sum\limits_{r = 1}^{n - 1} {{r^2}} + 3\sum\limits_{r = 1}^{n - 1} r = {\left( {\dfrac{{(n - 1)n}}{2}} \right)^2} + 3\dfrac{{(n - 1)n\left( {2(n - 1) + 1} \right)}}{6} + 3\dfrac{{(n - 1)n}}{2}\]
Now, on solving the left-hand side
i.e.\[{\left( {\dfrac{{(n - 1)n}}{2}} \right)^2} + 3\dfrac{{(n - 1)n\left( {2(n - 1) + 1} \right)}}{6} + 3\dfrac{{(n - 1)n}}{2} = \dfrac{{{{(n - 1)}^2}{n^2}}}{4} + \dfrac{{(n - 1)n\left( {2n - 1} \right)}}{2} + \dfrac{{3(n - 1)n}}{2}\]
using ${(a - b)^2} = {a^2} + {b^2} - 2ab$ and simplifying the brackets,
\[ = \dfrac{{\left( {{n^2} + 1 - 2n} \right){n^2}}}{4} + \dfrac{{n\left( {2{n^2} - n - 2n + 1} \right)}}{2} + \dfrac{{3{n^2} - 3n}}{2}\]
Again simplifying the brackets further, we get,
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - {n^2} - 2{n^2} + n}}{2} + \dfrac{{3{n^2} - 3n}}{2}\]
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - {n^2} - 2{n^2} + n + 3{n^2} - 3n}}{2}\]
Now adding the like terms,
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3}}}{4} + \dfrac{{2{n^3} - 2n}}{2}\]
Now, adding both the terms by taking LCM
\[ = \dfrac{{{n^4} + {n^2} - 2{n^3} + 4{n^3} - 4n}}{4}\]
Now adding the like terms
\[ = \dfrac{{{n^4} + 2{n^3} + {n^2} - 4n}}{4}\]
Taking n common from every term
\[ = \dfrac{n}{4}\left( {{n^3} + 2{n^2} + n - 4} \right)\]
$\therefore 1\left( {2 - \omega } \right)\left( {2 - {\omega ^2}} \right) + 2\left( {3 - \omega } \right) \times \left( {3 - {\omega ^2}} \right) + .......... + \left( {n - 1} \right)\left( {n - \omega } \right)\left( {n - {\omega ^2}} \right) = \dfrac{n}{4}\left( {{n^3} + 2{n^2} + n - 4} \right)$
Note: In this question, we have given the cube root of unity. There are a total 3 cube root of unity namely $1,\omega ,{\omega ^2}$
Where $\omega ,{\omega ^2}$are the imaginary roots having value as
$\omega = - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}$ , and
${\omega ^2} = - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}$
From the values of $\omega ,{\omega ^2}$, we can say that sum of cube roots of unity is zero
i.e. \[1 + \omega + {\omega ^2} = 1 - \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}\]
\[ = 0\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE