Answer
Verified
448.8k+ views
Hint: In order to solve this problem, we need to know multiple numbers of trigonometric identities and formula. The formulas we need to know are as follows, $\sin 2x=2\sin x\times \cos x$, $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$, ${{\sin }^{2}}1+{{\cos }^{2}}1=1$ , ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ and $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a.\tan b}$ and $\tan \left( -x \right)=-\tan x$.
Complete step-by-step solution:
We are given the expression and we need to find the value of it.
The expression is ${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)$ .
In order to simplify this, we need to know certain identities.
The identities are $\sin 2x=2\sin x\times \cos x$
And $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$
Using these identities, we get,
${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-1}{{{\cos }^{2}}1-{{\sin }^{2}}1} \right)$
We can now use the rule that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ in the denominator, we get,
${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-1}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)$
We can write 1 as ${{\sin }^{2}}1+{{\cos }^{2}}1$ because of the identity that ${{\sin }^{2}}1+{{\cos }^{2}}1=1$ .
The equation becomes,
${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-\left( {{\sin }^{2}}1+{{\cos }^{2}}1 \right)}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)$
In the numerator, we can combine all the terms using the identity ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ ,
We get,
${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-{{\left( \cos 1-\sin 1 \right)}^{2}}}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)$
We can cancel few of the terms form numerator as well as the denominator.
After solving we get,
\[{{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\left( \cos 1-\sin 1 \right)}{\left( \cos 1+\sin 1 \right)} \right)\]
Taking the cos 1 common from the numerator we get,
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\cos 1\left( 1-\tan 1 \right)}{\cos 1\left( 1+\tan 1 \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{-\left( 1-\tan 1 \right)}{\left( 1+\tan 1 \right)} \right)
\end{align}\]
We knew that $\tan \dfrac{\pi }{4}=1$ , substituting we get,
\[{{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\left( \tan \dfrac{\pi }{4}-\tan 1 \right)}{\left( 1+\tan \dfrac{\pi }{4}.\tan 1 \right)} \right)\]
We can see that \[\dfrac{\left( \tan \dfrac{\pi }{4}-\tan 1 \right)}{\left( 1+\tan \dfrac{\pi }{4}.\tan 1 \right)}={{\tan }^{-1}}\left( \dfrac{\pi }{4}-1 \right)\].
We can use identity $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a.\tan b}$ .
Substituting we get,
\[{{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( -\tan \left( \dfrac{\pi }{4}-1 \right) \right)\]
We need to take the negative inside.
We must know the property $\tan \left( -x \right)=-\tan x$ .
Solving this we get,
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \tan \left( 1-\dfrac{\pi }{4} \right) \right) \\
& =1-\dfrac{\pi }{4}
\end{align}\]
Hence, the correct option is (c).
Note: In this problem, the main trick is to know which formula to apply when. Also, many tend to make the wrong approach. Another approach that is usually taken is as follows,\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{\sin 2}{\cos 2}-\dfrac{1}{\cos 2} \right) \\
& ={{\tan }^{-1}}\left( \tan 2-\sec 2 \right) \\
& =2-{{\tan }^{-1}}\left( \sec 2 \right)
\end{align}\]
But this is not the correct approach to take.
Complete step-by-step solution:
We are given the expression and we need to find the value of it.
The expression is ${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)$ .
In order to simplify this, we need to know certain identities.
The identities are $\sin 2x=2\sin x\times \cos x$
And $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$
Using these identities, we get,
${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-1}{{{\cos }^{2}}1-{{\sin }^{2}}1} \right)$
We can now use the rule that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ in the denominator, we get,
${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-1}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)$
We can write 1 as ${{\sin }^{2}}1+{{\cos }^{2}}1$ because of the identity that ${{\sin }^{2}}1+{{\cos }^{2}}1=1$ .
The equation becomes,
${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{2\sin 1.\cos 1-\left( {{\sin }^{2}}1+{{\cos }^{2}}1 \right)}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)$
In the numerator, we can combine all the terms using the identity ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ ,
We get,
${{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-{{\left( \cos 1-\sin 1 \right)}^{2}}}{\left( \cos 1+\sin 1 \right)\left( \cos 1-\sin 1 \right)} \right)$
We can cancel few of the terms form numerator as well as the denominator.
After solving we get,
\[{{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\left( \cos 1-\sin 1 \right)}{\left( \cos 1+\sin 1 \right)} \right)\]
Taking the cos 1 common from the numerator we get,
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\cos 1\left( 1-\tan 1 \right)}{\cos 1\left( 1+\tan 1 \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{-\left( 1-\tan 1 \right)}{\left( 1+\tan 1 \right)} \right)
\end{align}\]
We knew that $\tan \dfrac{\pi }{4}=1$ , substituting we get,
\[{{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{-\left( \tan \dfrac{\pi }{4}-\tan 1 \right)}{\left( 1+\tan \dfrac{\pi }{4}.\tan 1 \right)} \right)\]
We can see that \[\dfrac{\left( \tan \dfrac{\pi }{4}-\tan 1 \right)}{\left( 1+\tan \dfrac{\pi }{4}.\tan 1 \right)}={{\tan }^{-1}}\left( \dfrac{\pi }{4}-1 \right)\].
We can use identity $\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a.\tan b}$ .
Substituting we get,
\[{{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( -\tan \left( \dfrac{\pi }{4}-1 \right) \right)\]
We need to take the negative inside.
We must know the property $\tan \left( -x \right)=-\tan x$ .
Solving this we get,
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \tan \left( 1-\dfrac{\pi }{4} \right) \right) \\
& =1-\dfrac{\pi }{4}
\end{align}\]
Hence, the correct option is (c).
Note: In this problem, the main trick is to know which formula to apply when. Also, many tend to make the wrong approach. Another approach that is usually taken is as follows,\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\sin 2-1}{\cos 2} \right)={{\tan }^{-1}}\left( \dfrac{\sin 2}{\cos 2}-\dfrac{1}{\cos 2} \right) \\
& ={{\tan }^{-1}}\left( \tan 2-\sec 2 \right) \\
& =2-{{\tan }^{-1}}\left( \sec 2 \right)
\end{align}\]
But this is not the correct approach to take.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths