
The value of ${{\tan }^{-1}}\left[ \dfrac{\sqrt{1+{{x}^{2}}}+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}-\sqrt{1-{{x}^{2}}}} \right],\left| x \right|<\dfrac{1}{2},x\ne 0$, is equal to.
(a) $\dfrac{\pi }{4}+\dfrac{1}{2}{{\cos }^{-1}}{{x}^{2}}$
(b) $\dfrac{\pi }{4}+{{\cos }^{-1}}{{x}^{2}}$
(c) $\dfrac{\pi }{4}-{{\cos }^{-1}}{{x}^{2}}$
Answer
588.9k+ views
Hint: To solve this question, we will use substitution method. We will take the value of ${{x}^{2}}=\cos \theta $. From trigonometric ratios of half angles, we know that $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}$. We will use this relation and reduce it in simples form of trigonometric ratio tan. Once we get the expression in tan, we can use the relation ${{\tan }^{-1}}\left( \tan x \right)=x$. After this, we will reverse the substitution and write the answer in terms of x.
Complete step-by-step solution:
The expression given to us is ${{\tan }^{-1}}\left[ \dfrac{\sqrt{1+{{x}^{2}}}+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}-\sqrt{1-{{x}^{2}}}} \right]$.
We will substitute ${{x}^{2}}=\cos \theta $. Thus, the expression changes as follows:
$\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{1+\cos \theta }+\sqrt{1-\cos \theta }}{\sqrt{1+\cos \theta }-\sqrt{1-\cos \theta }} \right]$
From the trigonometric ratios of half angles we know that $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}$.
$\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{2{{\cos }^{2}}\dfrac{\theta }{2}}+\sqrt{2{{\sin }^{2}}\dfrac{\theta }{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{\theta }{2}}-\sqrt{2{{\sin }^{2}}\dfrac{\theta }{2}}} \right]$
We will take $\sqrt{2}$ as common and bring out the sin and cos trigonometric ratio out of the root. The changed expression is as follows:
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{2}\left( \cos \dfrac{\theta }{2}+\sin \dfrac{\theta }{2} \right)}{\sqrt{2}\left( \cos \dfrac{\theta }{2}-\sin \dfrac{\theta }{2} \right)} \right]\]
$\sqrt{2}$ divides out from the numerator and denominator.
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\left( \cos \dfrac{\theta }{2}+\sin \dfrac{\theta }{2} \right)}{\left( \cos \dfrac{\theta }{2}-\sin \dfrac{\theta }{2} \right)} \right]\]
We will now take $\cos \dfrac{\theta }{2}$ common in the numerator and denominator. From the basic trigonometric ratios, we know that $\dfrac{\sin x}{\cos x}=\tan x$.
Thus, the expression of inverse tan will change as
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{\theta }{2}\left( 1+\dfrac{\sin \dfrac{\theta }{2}}{\cos \dfrac{\theta }{2}} \right)}{\cos \dfrac{\theta }{2}\left( 1-\dfrac{\sin \dfrac{\theta }{2}}{\cos \dfrac{\theta }{2}} \right)} \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{\theta }{2}\left( 1+\tan \dfrac{\theta }{2} \right)}{\cos \dfrac{\theta }{2}\left( 1-\tan \dfrac{\theta }{2} \right)} \right] \\
\end{align}\]
The trigonometric ratio of cos divides out from the numerator and the denominator.
$\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\left( 1+\tan \dfrac{\theta }{2} \right)}{\left( 1-\tan \dfrac{\theta }{2} \right)} \right]$
From basic trigonometric ratios, we know that $\tan \dfrac{\pi }{4}=1$. Thus, we will substitute it in the inverse tan expression.
$\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\tan \dfrac{\pi }{4}+\tan \dfrac{\theta }{2}}{\tan \dfrac{\pi }{4}-\tan \dfrac{\theta }{2}} \right]$
Now, we also know that $\dfrac{\tan \dfrac{\pi }{4}+\tan \dfrac{\theta }{2}}{\tan \dfrac{\pi }{4}-\tan \dfrac{\theta }{2}}=\tan \left( \dfrac{\pi }{4}+\dfrac{\theta }{2} \right)$
Therefore, the expression now will be ${{\tan }^{-1}}\left[ \tan \left( \dfrac{\pi }{4}+\dfrac{\theta }{2} \right) \right]$,
We know that ${{\tan }^{-1}}\left( \tan x \right)=x$
$\Rightarrow {{\tan }^{-1}}\left[ \tan \left( \dfrac{\pi }{4}+\dfrac{\theta }{2} \right) \right]=\dfrac{\pi }{4}+\dfrac{\theta }{2}$
Now, the substitution we initially made was ${{x}^{2}}=\cos \theta $. Therefore, $\theta ={{\cos }^{-1}}\left( {{x}^{2}} \right)$.
Thus, the expression will be as follows:
$\Rightarrow \dfrac{\pi }{4}+\dfrac{\theta }{2}=\dfrac{\pi }{4}+\dfrac{{{\cos }^{-1}}\left( {{x}^{2}} \right)}{2}$
Therefore, ${{\tan }^{-1}}\left[ \dfrac{\sqrt{1+{{x}^{2}}}+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}-\sqrt{1-{{x}^{2}}}} \right]=\dfrac{\pi }{4}+\dfrac{{{\cos }^{-1}}\left( {{x}^{2}} \right)}{2}$.
Hence, option (a) is the correct option.
Note: It is advisable to look at the options before starting to solve the question. They often give us a hint of how to solve the question. In the case of this question, we can see that in every option, one term is ${{\cos }^{-1}}\left( {{x}^{2}} \right)$, so, we can deduce that we need to make a substitution of ${{x}^{2}}=\cos \theta $, which will be reversed at the end of the solution.
Complete step-by-step solution:
The expression given to us is ${{\tan }^{-1}}\left[ \dfrac{\sqrt{1+{{x}^{2}}}+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}-\sqrt{1-{{x}^{2}}}} \right]$.
We will substitute ${{x}^{2}}=\cos \theta $. Thus, the expression changes as follows:
$\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{1+\cos \theta }+\sqrt{1-\cos \theta }}{\sqrt{1+\cos \theta }-\sqrt{1-\cos \theta }} \right]$
From the trigonometric ratios of half angles we know that $1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}$ and $1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}$.
$\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{2{{\cos }^{2}}\dfrac{\theta }{2}}+\sqrt{2{{\sin }^{2}}\dfrac{\theta }{2}}}{\sqrt{2{{\cos }^{2}}\dfrac{\theta }{2}}-\sqrt{2{{\sin }^{2}}\dfrac{\theta }{2}}} \right]$
We will take $\sqrt{2}$ as common and bring out the sin and cos trigonometric ratio out of the root. The changed expression is as follows:
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\sqrt{2}\left( \cos \dfrac{\theta }{2}+\sin \dfrac{\theta }{2} \right)}{\sqrt{2}\left( \cos \dfrac{\theta }{2}-\sin \dfrac{\theta }{2} \right)} \right]\]
$\sqrt{2}$ divides out from the numerator and denominator.
\[\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\left( \cos \dfrac{\theta }{2}+\sin \dfrac{\theta }{2} \right)}{\left( \cos \dfrac{\theta }{2}-\sin \dfrac{\theta }{2} \right)} \right]\]
We will now take $\cos \dfrac{\theta }{2}$ common in the numerator and denominator. From the basic trigonometric ratios, we know that $\dfrac{\sin x}{\cos x}=\tan x$.
Thus, the expression of inverse tan will change as
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{\theta }{2}\left( 1+\dfrac{\sin \dfrac{\theta }{2}}{\cos \dfrac{\theta }{2}} \right)}{\cos \dfrac{\theta }{2}\left( 1-\dfrac{\sin \dfrac{\theta }{2}}{\cos \dfrac{\theta }{2}} \right)} \right] \\
& \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{\theta }{2}\left( 1+\tan \dfrac{\theta }{2} \right)}{\cos \dfrac{\theta }{2}\left( 1-\tan \dfrac{\theta }{2} \right)} \right] \\
\end{align}\]
The trigonometric ratio of cos divides out from the numerator and the denominator.
$\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\left( 1+\tan \dfrac{\theta }{2} \right)}{\left( 1-\tan \dfrac{\theta }{2} \right)} \right]$
From basic trigonometric ratios, we know that $\tan \dfrac{\pi }{4}=1$. Thus, we will substitute it in the inverse tan expression.
$\Rightarrow {{\tan }^{-1}}\left[ \dfrac{\tan \dfrac{\pi }{4}+\tan \dfrac{\theta }{2}}{\tan \dfrac{\pi }{4}-\tan \dfrac{\theta }{2}} \right]$
Now, we also know that $\dfrac{\tan \dfrac{\pi }{4}+\tan \dfrac{\theta }{2}}{\tan \dfrac{\pi }{4}-\tan \dfrac{\theta }{2}}=\tan \left( \dfrac{\pi }{4}+\dfrac{\theta }{2} \right)$
Therefore, the expression now will be ${{\tan }^{-1}}\left[ \tan \left( \dfrac{\pi }{4}+\dfrac{\theta }{2} \right) \right]$,
We know that ${{\tan }^{-1}}\left( \tan x \right)=x$
$\Rightarrow {{\tan }^{-1}}\left[ \tan \left( \dfrac{\pi }{4}+\dfrac{\theta }{2} \right) \right]=\dfrac{\pi }{4}+\dfrac{\theta }{2}$
Now, the substitution we initially made was ${{x}^{2}}=\cos \theta $. Therefore, $\theta ={{\cos }^{-1}}\left( {{x}^{2}} \right)$.
Thus, the expression will be as follows:
$\Rightarrow \dfrac{\pi }{4}+\dfrac{\theta }{2}=\dfrac{\pi }{4}+\dfrac{{{\cos }^{-1}}\left( {{x}^{2}} \right)}{2}$
Therefore, ${{\tan }^{-1}}\left[ \dfrac{\sqrt{1+{{x}^{2}}}+\sqrt{1-{{x}^{2}}}}{\sqrt{1+{{x}^{2}}}-\sqrt{1-{{x}^{2}}}} \right]=\dfrac{\pi }{4}+\dfrac{{{\cos }^{-1}}\left( {{x}^{2}} \right)}{2}$.
Hence, option (a) is the correct option.
Note: It is advisable to look at the options before starting to solve the question. They often give us a hint of how to solve the question. In the case of this question, we can see that in every option, one term is ${{\cos }^{-1}}\left( {{x}^{2}} \right)$, so, we can deduce that we need to make a substitution of ${{x}^{2}}=\cos \theta $, which will be reversed at the end of the solution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

