Answer
Verified
449.1k+ views
Hint: We will use the trigonometric ratios of complementary angles. The complementary angle of \[\tan \theta \] is \[\cot ({90^ \circ } - \theta )\]. We also have to use the trigonometric identity \[\sin 2\theta = 2\sin \theta \cos \theta \] in the further parts of the question.
Complete step-by-step answer:
We are given two trigonometric ratios in the question \[tan({{\text{1}}^ \circ }{\text{) }}and{\text{ }}tan({89^ \circ })\].
We will proceed further by converting \[tan({{\text{1}}^ \circ }{\text{)}}\] into its complementary angle.
\[tan({{\text{1}}^ \circ }{\text{) = cot(90 - 1}}{{\text{)}}^ \circ } = \cot ({89^ \circ })\]
Therefore,
\[
\tan ({1^ \circ }) + \tan ({89^ \circ }) \\
= \tan ({90^ \circ } - {89^ \circ }) + \tan ({89^ \circ }) \\
= \cot ({89^ \circ }) + \tan ({89^ \circ }) \\
\]
Now, we will split the ratios into \[\sin \] and \[\cos \]
\[ \Rightarrow \dfrac{{\cos ({{89}^ \circ })}}{{\sin ({{89}^ \circ })}} + \dfrac{{\sin ({{89}^ \circ })}}{{\cos ({{89}^ \circ })}}\]
We will take the LCM of the two denominators,
\[ \Rightarrow \dfrac{{{{\cos }^2}({{89}^ \circ }) + {{\sin }^2}({{89}^ \circ })}}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], so
\[ \Rightarrow \dfrac{1}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}\]
Now, we will multiply \[2\] in both the numerator and denominator,
\[
\Rightarrow \dfrac{{2 \times 1}}{{2 \times \cos ({{89}^ \circ })\sin ({{89}^ \circ })}} \\
= \dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\
\]
We know that \[\sin 2\theta = 2\sin \theta \cos \theta \], so \[2\sin ({89^ \circ })\cos ({89^ \circ }) = \sin 2 \times {89^ \circ }\].
Therefore,
\[
\dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\
= \dfrac{2}{{\sin (2 \times {{89}^ \circ })}} \\
= \dfrac{2}{{\sin ({{178}^ \circ })}} \\
= \dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\
\]
Angle \[\theta \] lies in the first quadrant, where, \[90^\circ > \theta > 0^\circ \]and \[\left( {180^\circ - \theta } \right)\] lies in the 2nd quadrant. In the first and the second quadrant, \[sin\theta \] is always positive.
So,\[sin\left( {{{180}^ \circ } - \theta } \right) = sin\theta \]
Therefore,
\[
\dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\
= \dfrac{2}{{\sin ({2^ \circ })}} \\
\]
\[\therefore \tan (1^\circ ) + \tan (89^\circ ) = \dfrac{2}{{\sin (2^\circ )}}\]
Thus, the answer is option B.
Note: In these types of questions, we need to remember all the trigonometric identities that we have studied. All the trigonometric formulas are very important to solve problems like these.
Complete step-by-step answer:
We are given two trigonometric ratios in the question \[tan({{\text{1}}^ \circ }{\text{) }}and{\text{ }}tan({89^ \circ })\].
We will proceed further by converting \[tan({{\text{1}}^ \circ }{\text{)}}\] into its complementary angle.
\[tan({{\text{1}}^ \circ }{\text{) = cot(90 - 1}}{{\text{)}}^ \circ } = \cot ({89^ \circ })\]
Therefore,
\[
\tan ({1^ \circ }) + \tan ({89^ \circ }) \\
= \tan ({90^ \circ } - {89^ \circ }) + \tan ({89^ \circ }) \\
= \cot ({89^ \circ }) + \tan ({89^ \circ }) \\
\]
Now, we will split the ratios into \[\sin \] and \[\cos \]
\[ \Rightarrow \dfrac{{\cos ({{89}^ \circ })}}{{\sin ({{89}^ \circ })}} + \dfrac{{\sin ({{89}^ \circ })}}{{\cos ({{89}^ \circ })}}\]
We will take the LCM of the two denominators,
\[ \Rightarrow \dfrac{{{{\cos }^2}({{89}^ \circ }) + {{\sin }^2}({{89}^ \circ })}}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], so
\[ \Rightarrow \dfrac{1}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}\]
Now, we will multiply \[2\] in both the numerator and denominator,
\[
\Rightarrow \dfrac{{2 \times 1}}{{2 \times \cos ({{89}^ \circ })\sin ({{89}^ \circ })}} \\
= \dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\
\]
We know that \[\sin 2\theta = 2\sin \theta \cos \theta \], so \[2\sin ({89^ \circ })\cos ({89^ \circ }) = \sin 2 \times {89^ \circ }\].
Therefore,
\[
\dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\
= \dfrac{2}{{\sin (2 \times {{89}^ \circ })}} \\
= \dfrac{2}{{\sin ({{178}^ \circ })}} \\
= \dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\
\]
Angle \[\theta \] lies in the first quadrant, where, \[90^\circ > \theta > 0^\circ \]and \[\left( {180^\circ - \theta } \right)\] lies in the 2nd quadrant. In the first and the second quadrant, \[sin\theta \] is always positive.
So,\[sin\left( {{{180}^ \circ } - \theta } \right) = sin\theta \]
Therefore,
\[
\dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\
= \dfrac{2}{{\sin ({2^ \circ })}} \\
\]
\[\therefore \tan (1^\circ ) + \tan (89^\circ ) = \dfrac{2}{{\sin (2^\circ )}}\]
Thus, the answer is option B.
Note: In these types of questions, we need to remember all the trigonometric identities that we have studied. All the trigonometric formulas are very important to solve problems like these.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE