
The value of \[\tan ({1^ \circ }) + \tan ({89^ \circ })\]is___
\[
A.\dfrac{1}{{\sin ({1^ \circ })}} \\
B.\dfrac{2}{{\sin ({2^ \circ })}} \\
C.\dfrac{2}{{\sin ({1^ \circ })}} \\
D.\dfrac{1}{{\sin ({2^ \circ })}} \\
\]
Answer
592.8k+ views
Hint: We will use the trigonometric ratios of complementary angles. The complementary angle of \[\tan \theta \] is \[\cot ({90^ \circ } - \theta )\]. We also have to use the trigonometric identity \[\sin 2\theta = 2\sin \theta \cos \theta \] in the further parts of the question.
Complete step-by-step answer:
We are given two trigonometric ratios in the question \[tan({{\text{1}}^ \circ }{\text{) }}and{\text{ }}tan({89^ \circ })\].
We will proceed further by converting \[tan({{\text{1}}^ \circ }{\text{)}}\] into its complementary angle.
\[tan({{\text{1}}^ \circ }{\text{) = cot(90 - 1}}{{\text{)}}^ \circ } = \cot ({89^ \circ })\]
Therefore,
\[
\tan ({1^ \circ }) + \tan ({89^ \circ }) \\
= \tan ({90^ \circ } - {89^ \circ }) + \tan ({89^ \circ }) \\
= \cot ({89^ \circ }) + \tan ({89^ \circ }) \\
\]
Now, we will split the ratios into \[\sin \] and \[\cos \]
\[ \Rightarrow \dfrac{{\cos ({{89}^ \circ })}}{{\sin ({{89}^ \circ })}} + \dfrac{{\sin ({{89}^ \circ })}}{{\cos ({{89}^ \circ })}}\]
We will take the LCM of the two denominators,
\[ \Rightarrow \dfrac{{{{\cos }^2}({{89}^ \circ }) + {{\sin }^2}({{89}^ \circ })}}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], so
\[ \Rightarrow \dfrac{1}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}\]
Now, we will multiply \[2\] in both the numerator and denominator,
\[
\Rightarrow \dfrac{{2 \times 1}}{{2 \times \cos ({{89}^ \circ })\sin ({{89}^ \circ })}} \\
= \dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\
\]
We know that \[\sin 2\theta = 2\sin \theta \cos \theta \], so \[2\sin ({89^ \circ })\cos ({89^ \circ }) = \sin 2 \times {89^ \circ }\].
Therefore,
\[
\dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\
= \dfrac{2}{{\sin (2 \times {{89}^ \circ })}} \\
= \dfrac{2}{{\sin ({{178}^ \circ })}} \\
= \dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\
\]
Angle \[\theta \] lies in the first quadrant, where, \[90^\circ > \theta > 0^\circ \]and \[\left( {180^\circ - \theta } \right)\] lies in the 2nd quadrant. In the first and the second quadrant, \[sin\theta \] is always positive.
So,\[sin\left( {{{180}^ \circ } - \theta } \right) = sin\theta \]
Therefore,
\[
\dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\
= \dfrac{2}{{\sin ({2^ \circ })}} \\
\]
\[\therefore \tan (1^\circ ) + \tan (89^\circ ) = \dfrac{2}{{\sin (2^\circ )}}\]
Thus, the answer is option B.
Note: In these types of questions, we need to remember all the trigonometric identities that we have studied. All the trigonometric formulas are very important to solve problems like these.
Complete step-by-step answer:
We are given two trigonometric ratios in the question \[tan({{\text{1}}^ \circ }{\text{) }}and{\text{ }}tan({89^ \circ })\].
We will proceed further by converting \[tan({{\text{1}}^ \circ }{\text{)}}\] into its complementary angle.
\[tan({{\text{1}}^ \circ }{\text{) = cot(90 - 1}}{{\text{)}}^ \circ } = \cot ({89^ \circ })\]
Therefore,
\[
\tan ({1^ \circ }) + \tan ({89^ \circ }) \\
= \tan ({90^ \circ } - {89^ \circ }) + \tan ({89^ \circ }) \\
= \cot ({89^ \circ }) + \tan ({89^ \circ }) \\
\]
Now, we will split the ratios into \[\sin \] and \[\cos \]
\[ \Rightarrow \dfrac{{\cos ({{89}^ \circ })}}{{\sin ({{89}^ \circ })}} + \dfrac{{\sin ({{89}^ \circ })}}{{\cos ({{89}^ \circ })}}\]
We will take the LCM of the two denominators,
\[ \Rightarrow \dfrac{{{{\cos }^2}({{89}^ \circ }) + {{\sin }^2}({{89}^ \circ })}}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], so
\[ \Rightarrow \dfrac{1}{{\cos ({{89}^ \circ })\sin ({{89}^ \circ })}}\]
Now, we will multiply \[2\] in both the numerator and denominator,
\[
\Rightarrow \dfrac{{2 \times 1}}{{2 \times \cos ({{89}^ \circ })\sin ({{89}^ \circ })}} \\
= \dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\
\]
We know that \[\sin 2\theta = 2\sin \theta \cos \theta \], so \[2\sin ({89^ \circ })\cos ({89^ \circ }) = \sin 2 \times {89^ \circ }\].
Therefore,
\[
\dfrac{2}{{2\sin ({{89}^ \circ })\cos ({{89}^ \circ })}} \\
= \dfrac{2}{{\sin (2 \times {{89}^ \circ })}} \\
= \dfrac{2}{{\sin ({{178}^ \circ })}} \\
= \dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\
\]
Angle \[\theta \] lies in the first quadrant, where, \[90^\circ > \theta > 0^\circ \]and \[\left( {180^\circ - \theta } \right)\] lies in the 2nd quadrant. In the first and the second quadrant, \[sin\theta \] is always positive.
So,\[sin\left( {{{180}^ \circ } - \theta } \right) = sin\theta \]
Therefore,
\[
\dfrac{2}{{\sin ({{180}^ \circ } - {2^ \circ })}} \\
= \dfrac{2}{{\sin ({2^ \circ })}} \\
\]
\[\therefore \tan (1^\circ ) + \tan (89^\circ ) = \dfrac{2}{{\sin (2^\circ )}}\]
Thus, the answer is option B.
Note: In these types of questions, we need to remember all the trigonometric identities that we have studied. All the trigonometric formulas are very important to solve problems like these.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

