
The value of $\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $ is equal to
$
a.{\text{ 5}}\left( {2n - 9} \right) \\
b.{\text{ 10}}n \\
c.{\text{ 9}}\left( {n - 4} \right) \\
d.{\text{ }}\left( {n - 2} \right) \\
$
Answer
608.4k+ views
Hint – In this question use the property of combination which is given as ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so, use this property to reach the answer.
Given equation is
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $……………. (1)
As we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ (combination property)
So, ${}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}$
Now, we know that $r! = r\left( {r - 1} \right)!{\text{ \& }}\left( {n - r + 1} \right)! = \left( {n - r + 1} \right)\left( {n - r} \right)!$
So substitute these values in equation (1) and simplify we get
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {r.\dfrac{{\dfrac{{n!}}{{r!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}}}} = \sum\limits_{r = 1}^{10} {r.} \dfrac{{\dfrac{{n!}}{{r\left( {r - 1} \right)!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)\left( {n - r} \right)!}}}}$
Now simplify the above equation we have
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {\left( {n - r + 1} \right)} = \sum\limits_{r = 1}^{10} {\left( {\left( {n + 1} \right) - r} \right)} = \sum\limits_{r = 1}^{10} {\left( {n + 1} \right) - \sum\limits_{r = 1}^{10} r } $
(n + 1) is constant w.r.t. r so it is written outside the summation therefore
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } $
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } .............\left( 2 \right)$
Now as we know that $\sum\limits_{r = 1}^n 1 = n{\text{, }}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$
But in the above equation r is from 1 to 10.
$\sum\limits_{r = 1}^{10} 1 = 10{\text{, }}\sum\limits_{r = 1}^{10} r = \dfrac{{10\left( {10 + 1} \right)}}{2}$
Therefore from equation (2)
$
\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } = \left( {n + 1} \right)10 - \dfrac{{10\left( {10 + 1} \right)}}{2} \\
\Rightarrow \sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = 10n + 10 - 55 = 10n - 45 = 5\left( {2n - 9} \right) \\
$
Hence, option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall the property of combination and values of summation which is all stated above, then apply these properties in the given equation and simplify we will get the required answer.
Given equation is
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $……………. (1)
As we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ (combination property)
So, ${}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}$
Now, we know that $r! = r\left( {r - 1} \right)!{\text{ \& }}\left( {n - r + 1} \right)! = \left( {n - r + 1} \right)\left( {n - r} \right)!$
So substitute these values in equation (1) and simplify we get
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {r.\dfrac{{\dfrac{{n!}}{{r!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}}}} = \sum\limits_{r = 1}^{10} {r.} \dfrac{{\dfrac{{n!}}{{r\left( {r - 1} \right)!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)\left( {n - r} \right)!}}}}$
Now simplify the above equation we have
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {\left( {n - r + 1} \right)} = \sum\limits_{r = 1}^{10} {\left( {\left( {n + 1} \right) - r} \right)} = \sum\limits_{r = 1}^{10} {\left( {n + 1} \right) - \sum\limits_{r = 1}^{10} r } $
(n + 1) is constant w.r.t. r so it is written outside the summation therefore
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } $
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } .............\left( 2 \right)$
Now as we know that $\sum\limits_{r = 1}^n 1 = n{\text{, }}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$
But in the above equation r is from 1 to 10.
$\sum\limits_{r = 1}^{10} 1 = 10{\text{, }}\sum\limits_{r = 1}^{10} r = \dfrac{{10\left( {10 + 1} \right)}}{2}$
Therefore from equation (2)
$
\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } = \left( {n + 1} \right)10 - \dfrac{{10\left( {10 + 1} \right)}}{2} \\
\Rightarrow \sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = 10n + 10 - 55 = 10n - 45 = 5\left( {2n - 9} \right) \\
$
Hence, option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall the property of combination and values of summation which is all stated above, then apply these properties in the given equation and simplify we will get the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

