
The value of $\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $ is equal to
$
a.{\text{ 5}}\left( {2n - 9} \right) \\
b.{\text{ 10}}n \\
c.{\text{ 9}}\left( {n - 4} \right) \\
d.{\text{ }}\left( {n - 2} \right) \\
$
Answer
513.3k+ views
Hint – In this question use the property of combination which is given as ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so, use this property to reach the answer.
Given equation is
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $……………. (1)
As we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ (combination property)
So, ${}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}$
Now, we know that $r! = r\left( {r - 1} \right)!{\text{ \& }}\left( {n - r + 1} \right)! = \left( {n - r + 1} \right)\left( {n - r} \right)!$
So substitute these values in equation (1) and simplify we get
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {r.\dfrac{{\dfrac{{n!}}{{r!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}}}} = \sum\limits_{r = 1}^{10} {r.} \dfrac{{\dfrac{{n!}}{{r\left( {r - 1} \right)!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)\left( {n - r} \right)!}}}}$
Now simplify the above equation we have
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {\left( {n - r + 1} \right)} = \sum\limits_{r = 1}^{10} {\left( {\left( {n + 1} \right) - r} \right)} = \sum\limits_{r = 1}^{10} {\left( {n + 1} \right) - \sum\limits_{r = 1}^{10} r } $
(n + 1) is constant w.r.t. r so it is written outside the summation therefore
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } $
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } .............\left( 2 \right)$
Now as we know that $\sum\limits_{r = 1}^n 1 = n{\text{, }}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$
But in the above equation r is from 1 to 10.
$\sum\limits_{r = 1}^{10} 1 = 10{\text{, }}\sum\limits_{r = 1}^{10} r = \dfrac{{10\left( {10 + 1} \right)}}{2}$
Therefore from equation (2)
$
\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } = \left( {n + 1} \right)10 - \dfrac{{10\left( {10 + 1} \right)}}{2} \\
\Rightarrow \sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = 10n + 10 - 55 = 10n - 45 = 5\left( {2n - 9} \right) \\
$
Hence, option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall the property of combination and values of summation which is all stated above, then apply these properties in the given equation and simplify we will get the required answer.
Given equation is
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} $……………. (1)
As we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ (combination property)
So, ${}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}$
Now, we know that $r! = r\left( {r - 1} \right)!{\text{ \& }}\left( {n - r + 1} \right)! = \left( {n - r + 1} \right)\left( {n - r} \right)!$
So substitute these values in equation (1) and simplify we get
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {r.\dfrac{{\dfrac{{n!}}{{r!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}}}}} = \sum\limits_{r = 1}^{10} {r.} \dfrac{{\dfrac{{n!}}{{r\left( {r - 1} \right)!\left( {n - r} \right)!}}}}{{\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)\left( {n - r} \right)!}}}}$
Now simplify the above equation we have
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \sum\limits_{r = 1}^{10} {\left( {n - r + 1} \right)} = \sum\limits_{r = 1}^{10} {\left( {\left( {n + 1} \right) - r} \right)} = \sum\limits_{r = 1}^{10} {\left( {n + 1} \right) - \sum\limits_{r = 1}^{10} r } $
(n + 1) is constant w.r.t. r so it is written outside the summation therefore
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } $
$\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } .............\left( 2 \right)$
Now as we know that $\sum\limits_{r = 1}^n 1 = n{\text{, }}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}$
But in the above equation r is from 1 to 10.
$\sum\limits_{r = 1}^{10} 1 = 10{\text{, }}\sum\limits_{r = 1}^{10} r = \dfrac{{10\left( {10 + 1} \right)}}{2}$
Therefore from equation (2)
$
\sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = \left( {n + 1} \right)\sum\limits_{r = 1}^{10} {1 - \sum\limits_{r = 1}^{10} r } = \left( {n + 1} \right)10 - \dfrac{{10\left( {10 + 1} \right)}}{2} \\
\Rightarrow \sum\limits_{r = 1}^{10} {r.\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}}} = 10n + 10 - 55 = 10n - 45 = 5\left( {2n - 9} \right) \\
$
Hence, option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall the property of combination and values of summation which is all stated above, then apply these properties in the given equation and simplify we will get the required answer.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Find the image of the point 38 about the line x+3y class 11 maths CBSE

Can anyone list 10 advantages and disadvantages of friction

Distinguish between Mitosis and Meiosis class 11 biology CBSE
