
The value of $\sum\limits_{r = 0}^{1002} {{{( - 1)}^r}(a + rd)} $equals
A.$a + 1003d$
B.$a + 1004d$
C.$a + 500d$
D.$a + 501d$
Answer
608.1k+ views
Hint: Here, we will solve the given question by summation of terms starting from r=0 to r=1002
Given,
$\sum\limits_{r = 0}^{1002} {{{( - 1)}^r}(a + rd)} \to (1)$
Now, let us expand the equation 1 by substituting the values of r from $0$ to 1002, we get
$ \Rightarrow {( - 1)^0}(a + (0)d) + {( - 1)^1}(a + d) + {( - 1)^2}(a + 2d) + ....... + {( - 1)^{1001}}(a + 1001d) + {( - 1)^{1002}}(a + 1002d)$Since, we know ${( - 1)^{odd}} = - 1$ and ${( - 1)^{even}} = 1$ , so the terms having r value as an odd number will have negative sign, whereas the terms having r value as an even number will have positive sign, now we can simplify the above equation as follows
$ \Rightarrow a - (a + d) + (a + 2d) + ....... - (a + 1001d) + (a + 1002d)$
Now, grouping the like terms, we get
$ \Rightarrow (a - a + a - a + ......$Upto $1003$ terms) -$d(1 - 2 + 3 - 4 + ... + 1001 - 1002) \to (2)$
As, we know 1-2+3-4…..upto n terms (‘n’ is even) =$ - \frac{n}{2}$. Here, we have n as 1002 which is even therefore,
$1 - 2 + 3 - 4 + .... + 1001 - 1002 = \frac{{ - 1002}}{2} = - 501 \to (3)$And
$a - a + a - a + ....upto 1003 terms = a[\because $Odd number of ‘a’ terms]$ \to (4)$
Substituting equations (3), (4) in equation (2), we get
$
\Rightarrow a - d( - 501) \\
\Rightarrow a + 501d \\
$
Therefore, $\sum\limits_{r = 0}^{1002} {{{( - 1)}^r}(a + rd)} = a + 501d$.
Hence, the correct option for the given question is ‘D’.
Note: Here, we have computed the value of a - a + a - a + ....upto 1003 terms as ‘a’. As out of 1003 terms, there will be 502 terms of ‘a’ and 501 terms ‘-a’. Hence, if we sum up the terms 501 terms of ‘a’ and 501 terms ‘-a’ gets cancelled and will be left with a single term ‘a’.
Given,
$\sum\limits_{r = 0}^{1002} {{{( - 1)}^r}(a + rd)} \to (1)$
Now, let us expand the equation 1 by substituting the values of r from $0$ to 1002, we get
$ \Rightarrow {( - 1)^0}(a + (0)d) + {( - 1)^1}(a + d) + {( - 1)^2}(a + 2d) + ....... + {( - 1)^{1001}}(a + 1001d) + {( - 1)^{1002}}(a + 1002d)$Since, we know ${( - 1)^{odd}} = - 1$ and ${( - 1)^{even}} = 1$ , so the terms having r value as an odd number will have negative sign, whereas the terms having r value as an even number will have positive sign, now we can simplify the above equation as follows
$ \Rightarrow a - (a + d) + (a + 2d) + ....... - (a + 1001d) + (a + 1002d)$
Now, grouping the like terms, we get
$ \Rightarrow (a - a + a - a + ......$Upto $1003$ terms) -$d(1 - 2 + 3 - 4 + ... + 1001 - 1002) \to (2)$
As, we know 1-2+3-4…..upto n terms (‘n’ is even) =$ - \frac{n}{2}$. Here, we have n as 1002 which is even therefore,
$1 - 2 + 3 - 4 + .... + 1001 - 1002 = \frac{{ - 1002}}{2} = - 501 \to (3)$And
$a - a + a - a + ....upto 1003 terms = a[\because $Odd number of ‘a’ terms]$ \to (4)$
Substituting equations (3), (4) in equation (2), we get
$
\Rightarrow a - d( - 501) \\
\Rightarrow a + 501d \\
$
Therefore, $\sum\limits_{r = 0}^{1002} {{{( - 1)}^r}(a + rd)} = a + 501d$.
Hence, the correct option for the given question is ‘D’.
Note: Here, we have computed the value of a - a + a - a + ....upto 1003 terms as ‘a’. As out of 1003 terms, there will be 502 terms of ‘a’ and 501 terms ‘-a’. Hence, if we sum up the terms 501 terms of ‘a’ and 501 terms ‘-a’ gets cancelled and will be left with a single term ‘a’.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

