
The value of \[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\] is equal to
A. \[{{3}^{10}}\]
B. \[{{3}^{10}}-1\]
C. \[{{2}^{10}}\]
D. \[{{2}^{10}}-1\]
Answer
600.6k+ views
Hint: First expand the summation with all possible values then use the idea of identity that,
\[^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}\] then try to use the theorem of Binomial expression,
\[^{n}{{\text{C}}_{\text{0}}}{{x}^{0}}{{+}^{n}}{{\text{C}}_{1}}{{x}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{x}^{2}}+........{{+}^{n}}{{\text{C}}_{n}}{{x}^{n}}\] to finally get the desired results.
Complete step by step answer:
In the question we have been asked to find \[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\]
Now, as we know that the expression is,
\[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\]
So, we will break it and we can write it as,
\[^{10}{{\text{C}}_{\text{0}}}{{+}^{10}}{{\text{C}}_{1}}\left( ^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}} \right){{+}^{10}}{{\text{C}}_{2}}\left( ^{2}{{\text{C}}_{0}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}} \right){{+}^{10}}{{\text{C}}_{3}}\left( ^{3}{{\text{C}}_{0}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}} \right)+...\]\[{{+}^{10}}{{\text{C}}_{4}}\left( ^{4}{{\text{C}}_{0}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}} \right)+.......{{+}^{10}}{{\text{C}}_{10}}\left( ^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}{{+}^{10}}{{\text{C}}_{2}}+{{..........}^{10}}{{\text{C}}_{10}} \right)\]
So, we can rewrite the above expression using formula,
\[^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}\]
So, \[^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}}=\ {{2}^{1}}\]
\[^{2}{{\text{C}}_{\text{0}}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}}=\ 2\]
\[^{3}{{\text{C}}_{\text{0}}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}}=\ {{2}^{3}}\]
\[^{4}{{\text{C}}_{\text{0}}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}}=\ {{2}^{4}}\]
Just like this we can also represent,
\[^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}+{{..........}^{10}}{{\text{C}}_{10}}=\ {{2}^{10}}\]
Hence, we can write expression as,
\[^{10}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}\].
So, we can write it as,
\[{{\left( 1+2 \right)}^{10}}\ =\ {{3}^{10}}\]
Or, \[{{\left( 1+2 \right)}^{10}}\ ={{\ }^{10}}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}\] .
Hence, the answer is \[{{\left( 1+2 \right)}^{10}}\] which is \[{{3}^{10}}\].
Hence, the correct option is ‘A’.
Note: Students should have an idea of how to reconvert back from expansion of term to back into a single term with power. They should also be careful about calculation too.
\[^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}\] then try to use the theorem of Binomial expression,
\[^{n}{{\text{C}}_{\text{0}}}{{x}^{0}}{{+}^{n}}{{\text{C}}_{1}}{{x}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{x}^{2}}+........{{+}^{n}}{{\text{C}}_{n}}{{x}^{n}}\] to finally get the desired results.
Complete step by step answer:
In the question we have been asked to find \[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\]
Now, as we know that the expression is,
\[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\]
So, we will break it and we can write it as,
\[^{10}{{\text{C}}_{\text{0}}}{{+}^{10}}{{\text{C}}_{1}}\left( ^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}} \right){{+}^{10}}{{\text{C}}_{2}}\left( ^{2}{{\text{C}}_{0}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}} \right){{+}^{10}}{{\text{C}}_{3}}\left( ^{3}{{\text{C}}_{0}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}} \right)+...\]\[{{+}^{10}}{{\text{C}}_{4}}\left( ^{4}{{\text{C}}_{0}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}} \right)+.......{{+}^{10}}{{\text{C}}_{10}}\left( ^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}{{+}^{10}}{{\text{C}}_{2}}+{{..........}^{10}}{{\text{C}}_{10}} \right)\]
So, we can rewrite the above expression using formula,
\[^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}\]
So, \[^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}}=\ {{2}^{1}}\]
\[^{2}{{\text{C}}_{\text{0}}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}}=\ 2\]
\[^{3}{{\text{C}}_{\text{0}}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}}=\ {{2}^{3}}\]
\[^{4}{{\text{C}}_{\text{0}}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}}=\ {{2}^{4}}\]
Just like this we can also represent,
\[^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}+{{..........}^{10}}{{\text{C}}_{10}}=\ {{2}^{10}}\]
Hence, we can write expression as,
\[^{10}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}\].
So, we can write it as,
\[{{\left( 1+2 \right)}^{10}}\ =\ {{3}^{10}}\]
Or, \[{{\left( 1+2 \right)}^{10}}\ ={{\ }^{10}}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}\] .
Hence, the answer is \[{{\left( 1+2 \right)}^{10}}\] which is \[{{3}^{10}}\].
Hence, the correct option is ‘A’.
Note: Students should have an idea of how to reconvert back from expansion of term to back into a single term with power. They should also be careful about calculation too.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

