
The value of \[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\] is equal to
A. \[{{3}^{10}}\]
B. \[{{3}^{10}}-1\]
C. \[{{2}^{10}}\]
D. \[{{2}^{10}}-1\]
Answer
615k+ views
Hint: First expand the summation with all possible values then use the idea of identity that,
\[^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}\] then try to use the theorem of Binomial expression,
\[^{n}{{\text{C}}_{\text{0}}}{{x}^{0}}{{+}^{n}}{{\text{C}}_{1}}{{x}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{x}^{2}}+........{{+}^{n}}{{\text{C}}_{n}}{{x}^{n}}\] to finally get the desired results.
Complete step by step answer:
In the question we have been asked to find \[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\]
Now, as we know that the expression is,
\[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\]
So, we will break it and we can write it as,
\[^{10}{{\text{C}}_{\text{0}}}{{+}^{10}}{{\text{C}}_{1}}\left( ^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}} \right){{+}^{10}}{{\text{C}}_{2}}\left( ^{2}{{\text{C}}_{0}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}} \right){{+}^{10}}{{\text{C}}_{3}}\left( ^{3}{{\text{C}}_{0}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}} \right)+...\]\[{{+}^{10}}{{\text{C}}_{4}}\left( ^{4}{{\text{C}}_{0}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}} \right)+.......{{+}^{10}}{{\text{C}}_{10}}\left( ^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}{{+}^{10}}{{\text{C}}_{2}}+{{..........}^{10}}{{\text{C}}_{10}} \right)\]
So, we can rewrite the above expression using formula,
\[^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}\]
So, \[^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}}=\ {{2}^{1}}\]
\[^{2}{{\text{C}}_{\text{0}}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}}=\ 2\]
\[^{3}{{\text{C}}_{\text{0}}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}}=\ {{2}^{3}}\]
\[^{4}{{\text{C}}_{\text{0}}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}}=\ {{2}^{4}}\]
Just like this we can also represent,
\[^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}+{{..........}^{10}}{{\text{C}}_{10}}=\ {{2}^{10}}\]
Hence, we can write expression as,
\[^{10}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}\].
So, we can write it as,
\[{{\left( 1+2 \right)}^{10}}\ =\ {{3}^{10}}\]
Or, \[{{\left( 1+2 \right)}^{10}}\ ={{\ }^{10}}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}\] .
Hence, the answer is \[{{\left( 1+2 \right)}^{10}}\] which is \[{{3}^{10}}\].
Hence, the correct option is ‘A’.
Note: Students should have an idea of how to reconvert back from expansion of term to back into a single term with power. They should also be careful about calculation too.
\[^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}\] then try to use the theorem of Binomial expression,
\[^{n}{{\text{C}}_{\text{0}}}{{x}^{0}}{{+}^{n}}{{\text{C}}_{1}}{{x}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{x}^{2}}+........{{+}^{n}}{{\text{C}}_{n}}{{x}^{n}}\] to finally get the desired results.
Complete step by step answer:
In the question we have been asked to find \[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\]
Now, as we know that the expression is,
\[\sum\limits_{0\ \le \ i\ \ \le \ j\ \le \ 10}{\sum{\left( ^{10}{{\text{C}}_{j}} \right)\left( ^{j}{{\text{C}}_{j}} \right)}}\]
So, we will break it and we can write it as,
\[^{10}{{\text{C}}_{\text{0}}}{{+}^{10}}{{\text{C}}_{1}}\left( ^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}} \right){{+}^{10}}{{\text{C}}_{2}}\left( ^{2}{{\text{C}}_{0}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}} \right){{+}^{10}}{{\text{C}}_{3}}\left( ^{3}{{\text{C}}_{0}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}} \right)+...\]\[{{+}^{10}}{{\text{C}}_{4}}\left( ^{4}{{\text{C}}_{0}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}} \right)+.......{{+}^{10}}{{\text{C}}_{10}}\left( ^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}{{+}^{10}}{{\text{C}}_{2}}+{{..........}^{10}}{{\text{C}}_{10}} \right)\]
So, we can rewrite the above expression using formula,
\[^{n}{{\text{C}}_{\text{0}}}{{+}^{n}}{{\text{C}}_{1}}{{+}^{n}}{{\text{C}}_{2}}+........{{+}^{n}}{{\text{C}}_{n}}\ =\ {{2}^{n}}\]
So, \[^{1}{{\text{C}}_{\text{0}}}{{+}^{1}}{{\text{C}}_{1}}=\ {{2}^{1}}\]
\[^{2}{{\text{C}}_{\text{0}}}{{+}^{2}}{{\text{C}}_{1}}{{+}^{2}}{{\text{C}}_{2}}=\ 2\]
\[^{3}{{\text{C}}_{\text{0}}}{{+}^{3}}{{\text{C}}_{1}}{{+}^{3}}{{\text{C}}_{2}}{{+}^{3}}{{\text{C}}_{3}}=\ {{2}^{3}}\]
\[^{4}{{\text{C}}_{\text{0}}}{{+}^{4}}{{\text{C}}_{1}}{{+}^{4}}{{\text{C}}_{2}}{{+}^{4}}{{\text{C}}_{3}}{{+}^{4}}{{\text{C}}_{4}}=\ {{2}^{4}}\]
Just like this we can also represent,
\[^{10}{{\text{C}}_{0}}{{+}^{10}}{{\text{C}}_{1}}+{{..........}^{10}}{{\text{C}}_{10}}=\ {{2}^{10}}\]
Hence, we can write expression as,
\[^{10}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}\].
So, we can write it as,
\[{{\left( 1+2 \right)}^{10}}\ =\ {{3}^{10}}\]
Or, \[{{\left( 1+2 \right)}^{10}}\ ={{\ }^{10}}{{\text{C}}_{0}}\centerdot {{2}^{0}}{{+}^{10}}{{\text{C}}_{1}}\centerdot {{2}^{1}}{{+}^{10}}{{\text{C}}_{2}}\centerdot {{2}^{2}}{{+}^{10}}{{\text{C}}_{3}}\centerdot {{2}^{3}}+..........{{+}^{10}}{{\text{C}}_{10}}\centerdot {{2}^{10}}\] .
Hence, the answer is \[{{\left( 1+2 \right)}^{10}}\] which is \[{{3}^{10}}\].
Hence, the correct option is ‘A’.
Note: Students should have an idea of how to reconvert back from expansion of term to back into a single term with power. They should also be careful about calculation too.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

