
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is
A. \[\sqrt {{x^2} + 1} \]
B. \[\dfrac{1}{{\sqrt {{x^2} + 1} }}\]
C. \[\sqrt {{x^2} - 1} \]
D. None of those
Answer
592.2k+ views
Hint: Firstly we simplify \[{\cosh ^{ - 1}}x\] and then analyze that the value of \[\sinh x\]. We need to describe \[\sinh x\] and \[\cosh x\] in terms of \[{e^x}\], and on simplification we get our answer.
We, also use the formula of Sridhar Archaya for \[a{x^2} + bx + c = 0\], we have, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step by step solution: We start with, \[x = \cosh y\]
We use the fact that \[\cos {\text{ }}hy = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
\[ \Rightarrow x = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
On simplifying further we get,
\[ \Rightarrow 2x = {e^y} + {e^{ - y}}\]
\[ \Rightarrow 2x = {e^y} + \dfrac{1}{{{e^y}}}\]
\[ \Rightarrow 2x = \dfrac{{{e^{2y}} + 1}}{{{e^y}}}\]
On cross multiplication we get,
\[ \Rightarrow {e^y}2x = {e^{2y}} + 1\]
\[ \Rightarrow {e^{2y}} - 2x{e^y} + 1 = 0\]
Let, \[{e^y} = u\],
\[ \Rightarrow {u^2} - 2xu + 1 = 0\]
By the formula of Sridhar Archaya, we have, for \[a{x^2} + bx + c = 0\], \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[ \Rightarrow u = \dfrac{{ - ( - 2x) \pm \sqrt {{{( - 2x)}^2} - 4.1.1} }}{2}\]
\[ \Rightarrow u = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2}\]
On taking 2 out of the root, we get,
\[ \Rightarrow u = \dfrac{{2x \pm 2\sqrt {{x^2} - 1} }}{2}\]
\[ \Rightarrow u = x \pm \sqrt {{x^2} - 1} \]
On Substituting the value of u, we get,
\[ \Rightarrow {e^y} = x \pm \sqrt {{x^2} - 1} \]
As both of these are positive, we get,
\[ \Rightarrow y = \ln (x \pm \sqrt {{x^2} - 1} )\]
Now, \[\sinh ({\cosh ^{ - 1}}x)\]
\[ = \sinh y\]
On substituting the value of y we get,
\[ = \sinh (\ln (x \pm \sqrt {{x^2} - 1} ))\]
Now as, \[\sinh x = \dfrac{{({e^x} - {e^{ - x}})}}{2}\],
So we get,
\[ = \dfrac{1}{2}({e^{(\ln (x \pm \sqrt {{x^2} - 1} ))}} - {e^{ - (\ln (x \pm \sqrt {{x^2} - 1} ))}})\]
As, \[{e^{\ln (x)}} = x\],
So we have,
\[ = \dfrac{1}{2}(x \pm \sqrt {{x^2} - 1} - \dfrac{1}{{x \pm \sqrt {{x^2} - 1} }})\]
On considering, \[\dfrac{1}{2}(x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \dfrac{1}{2}(\dfrac{{{{(x + \sqrt {{x^2} - 1} )}^2} - 1}}{{x + \sqrt {{x^2} - 1} }})\]
On applying, \[{{\text{(a + b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}\], we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{(}}\dfrac{{{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 1 + 2x}}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} {\text{ - 1}}}}{{{\text{x + }}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} }}{\text{)}}\]
\[ = \dfrac{1}{2}(\dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking 2 common, we get,
\[ = \dfrac{2}{2}(\dfrac{{{x^2} - 1 + x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking \[\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} \] common we get,
\[ = \sqrt {{x^2} - 1} (\dfrac{{\sqrt {{x^2} - 1} + x}}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \sqrt {{x^2} - 1} \]
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is, \[\sqrt {{x^2} - 1} \]
Hence the correct option is (C).
Note: You need to remember \[\sinh x = \dfrac{1}{2}({e^x} - {e^{ - x}})\] and \[\cosh x = \dfrac{1}{2}({e^x} + {e^{ - x}})\]. When we find \[{\cosh ^{ - 1}}x\] we take \[y = {\cosh ^{ - 1}}x\] to deal with our given problem. We need to know cos and sin function and \[cosh\] and \[sinh\] function are not the same.
We, also use the formula of Sridhar Archaya for \[a{x^2} + bx + c = 0\], we have, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step by step solution: We start with, \[x = \cosh y\]
We use the fact that \[\cos {\text{ }}hy = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
\[ \Rightarrow x = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
On simplifying further we get,
\[ \Rightarrow 2x = {e^y} + {e^{ - y}}\]
\[ \Rightarrow 2x = {e^y} + \dfrac{1}{{{e^y}}}\]
\[ \Rightarrow 2x = \dfrac{{{e^{2y}} + 1}}{{{e^y}}}\]
On cross multiplication we get,
\[ \Rightarrow {e^y}2x = {e^{2y}} + 1\]
\[ \Rightarrow {e^{2y}} - 2x{e^y} + 1 = 0\]
Let, \[{e^y} = u\],
\[ \Rightarrow {u^2} - 2xu + 1 = 0\]
By the formula of Sridhar Archaya, we have, for \[a{x^2} + bx + c = 0\], \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[ \Rightarrow u = \dfrac{{ - ( - 2x) \pm \sqrt {{{( - 2x)}^2} - 4.1.1} }}{2}\]
\[ \Rightarrow u = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2}\]
On taking 2 out of the root, we get,
\[ \Rightarrow u = \dfrac{{2x \pm 2\sqrt {{x^2} - 1} }}{2}\]
\[ \Rightarrow u = x \pm \sqrt {{x^2} - 1} \]
On Substituting the value of u, we get,
\[ \Rightarrow {e^y} = x \pm \sqrt {{x^2} - 1} \]
As both of these are positive, we get,
\[ \Rightarrow y = \ln (x \pm \sqrt {{x^2} - 1} )\]
Now, \[\sinh ({\cosh ^{ - 1}}x)\]
\[ = \sinh y\]
On substituting the value of y we get,
\[ = \sinh (\ln (x \pm \sqrt {{x^2} - 1} ))\]
Now as, \[\sinh x = \dfrac{{({e^x} - {e^{ - x}})}}{2}\],
So we get,
\[ = \dfrac{1}{2}({e^{(\ln (x \pm \sqrt {{x^2} - 1} ))}} - {e^{ - (\ln (x \pm \sqrt {{x^2} - 1} ))}})\]
As, \[{e^{\ln (x)}} = x\],
So we have,
\[ = \dfrac{1}{2}(x \pm \sqrt {{x^2} - 1} - \dfrac{1}{{x \pm \sqrt {{x^2} - 1} }})\]
On considering, \[\dfrac{1}{2}(x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \dfrac{1}{2}(\dfrac{{{{(x + \sqrt {{x^2} - 1} )}^2} - 1}}{{x + \sqrt {{x^2} - 1} }})\]
On applying, \[{{\text{(a + b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}\], we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{(}}\dfrac{{{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 1 + 2x}}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} {\text{ - 1}}}}{{{\text{x + }}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} }}{\text{)}}\]
\[ = \dfrac{1}{2}(\dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking 2 common, we get,
\[ = \dfrac{2}{2}(\dfrac{{{x^2} - 1 + x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking \[\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} \] common we get,
\[ = \sqrt {{x^2} - 1} (\dfrac{{\sqrt {{x^2} - 1} + x}}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \sqrt {{x^2} - 1} \]
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is, \[\sqrt {{x^2} - 1} \]
Hence the correct option is (C).
Note: You need to remember \[\sinh x = \dfrac{1}{2}({e^x} - {e^{ - x}})\] and \[\cosh x = \dfrac{1}{2}({e^x} + {e^{ - x}})\]. When we find \[{\cosh ^{ - 1}}x\] we take \[y = {\cosh ^{ - 1}}x\] to deal with our given problem. We need to know cos and sin function and \[cosh\] and \[sinh\] function are not the same.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

