
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is
A. \[\sqrt {{x^2} + 1} \]
B. \[\dfrac{1}{{\sqrt {{x^2} + 1} }}\]
C. \[\sqrt {{x^2} - 1} \]
D. None of those
Answer
510.6k+ views
Hint: Firstly we simplify \[{\cosh ^{ - 1}}x\] and then analyze that the value of \[\sinh x\]. We need to describe \[\sinh x\] and \[\cosh x\] in terms of \[{e^x}\], and on simplification we get our answer.
We, also use the formula of Sridhar Archaya for \[a{x^2} + bx + c = 0\], we have, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step by step solution: We start with, \[x = \cosh y\]
We use the fact that \[\cos {\text{ }}hy = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
\[ \Rightarrow x = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
On simplifying further we get,
\[ \Rightarrow 2x = {e^y} + {e^{ - y}}\]
\[ \Rightarrow 2x = {e^y} + \dfrac{1}{{{e^y}}}\]
\[ \Rightarrow 2x = \dfrac{{{e^{2y}} + 1}}{{{e^y}}}\]
On cross multiplication we get,
\[ \Rightarrow {e^y}2x = {e^{2y}} + 1\]
\[ \Rightarrow {e^{2y}} - 2x{e^y} + 1 = 0\]
Let, \[{e^y} = u\],
\[ \Rightarrow {u^2} - 2xu + 1 = 0\]
By the formula of Sridhar Archaya, we have, for \[a{x^2} + bx + c = 0\], \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[ \Rightarrow u = \dfrac{{ - ( - 2x) \pm \sqrt {{{( - 2x)}^2} - 4.1.1} }}{2}\]
\[ \Rightarrow u = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2}\]
On taking 2 out of the root, we get,
\[ \Rightarrow u = \dfrac{{2x \pm 2\sqrt {{x^2} - 1} }}{2}\]
\[ \Rightarrow u = x \pm \sqrt {{x^2} - 1} \]
On Substituting the value of u, we get,
\[ \Rightarrow {e^y} = x \pm \sqrt {{x^2} - 1} \]
As both of these are positive, we get,
\[ \Rightarrow y = \ln (x \pm \sqrt {{x^2} - 1} )\]
Now, \[\sinh ({\cosh ^{ - 1}}x)\]
\[ = \sinh y\]
On substituting the value of y we get,
\[ = \sinh (\ln (x \pm \sqrt {{x^2} - 1} ))\]
Now as, \[\sinh x = \dfrac{{({e^x} - {e^{ - x}})}}{2}\],
So we get,
\[ = \dfrac{1}{2}({e^{(\ln (x \pm \sqrt {{x^2} - 1} ))}} - {e^{ - (\ln (x \pm \sqrt {{x^2} - 1} ))}})\]
As, \[{e^{\ln (x)}} = x\],
So we have,
\[ = \dfrac{1}{2}(x \pm \sqrt {{x^2} - 1} - \dfrac{1}{{x \pm \sqrt {{x^2} - 1} }})\]
On considering, \[\dfrac{1}{2}(x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \dfrac{1}{2}(\dfrac{{{{(x + \sqrt {{x^2} - 1} )}^2} - 1}}{{x + \sqrt {{x^2} - 1} }})\]
On applying, \[{{\text{(a + b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}\], we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{(}}\dfrac{{{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 1 + 2x}}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} {\text{ - 1}}}}{{{\text{x + }}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} }}{\text{)}}\]
\[ = \dfrac{1}{2}(\dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking 2 common, we get,
\[ = \dfrac{2}{2}(\dfrac{{{x^2} - 1 + x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking \[\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} \] common we get,
\[ = \sqrt {{x^2} - 1} (\dfrac{{\sqrt {{x^2} - 1} + x}}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \sqrt {{x^2} - 1} \]
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is, \[\sqrt {{x^2} - 1} \]
Hence the correct option is (C).
Note: You need to remember \[\sinh x = \dfrac{1}{2}({e^x} - {e^{ - x}})\] and \[\cosh x = \dfrac{1}{2}({e^x} + {e^{ - x}})\]. When we find \[{\cosh ^{ - 1}}x\] we take \[y = {\cosh ^{ - 1}}x\] to deal with our given problem. We need to know cos and sin function and \[cosh\] and \[sinh\] function are not the same.
We, also use the formula of Sridhar Archaya for \[a{x^2} + bx + c = 0\], we have, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step by step solution: We start with, \[x = \cosh y\]
We use the fact that \[\cos {\text{ }}hy = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
\[ \Rightarrow x = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
On simplifying further we get,
\[ \Rightarrow 2x = {e^y} + {e^{ - y}}\]
\[ \Rightarrow 2x = {e^y} + \dfrac{1}{{{e^y}}}\]
\[ \Rightarrow 2x = \dfrac{{{e^{2y}} + 1}}{{{e^y}}}\]
On cross multiplication we get,
\[ \Rightarrow {e^y}2x = {e^{2y}} + 1\]
\[ \Rightarrow {e^{2y}} - 2x{e^y} + 1 = 0\]
Let, \[{e^y} = u\],
\[ \Rightarrow {u^2} - 2xu + 1 = 0\]
By the formula of Sridhar Archaya, we have, for \[a{x^2} + bx + c = 0\], \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[ \Rightarrow u = \dfrac{{ - ( - 2x) \pm \sqrt {{{( - 2x)}^2} - 4.1.1} }}{2}\]
\[ \Rightarrow u = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2}\]
On taking 2 out of the root, we get,
\[ \Rightarrow u = \dfrac{{2x \pm 2\sqrt {{x^2} - 1} }}{2}\]
\[ \Rightarrow u = x \pm \sqrt {{x^2} - 1} \]
On Substituting the value of u, we get,
\[ \Rightarrow {e^y} = x \pm \sqrt {{x^2} - 1} \]
As both of these are positive, we get,
\[ \Rightarrow y = \ln (x \pm \sqrt {{x^2} - 1} )\]
Now, \[\sinh ({\cosh ^{ - 1}}x)\]
\[ = \sinh y\]
On substituting the value of y we get,
\[ = \sinh (\ln (x \pm \sqrt {{x^2} - 1} ))\]
Now as, \[\sinh x = \dfrac{{({e^x} - {e^{ - x}})}}{2}\],
So we get,
\[ = \dfrac{1}{2}({e^{(\ln (x \pm \sqrt {{x^2} - 1} ))}} - {e^{ - (\ln (x \pm \sqrt {{x^2} - 1} ))}})\]
As, \[{e^{\ln (x)}} = x\],
So we have,
\[ = \dfrac{1}{2}(x \pm \sqrt {{x^2} - 1} - \dfrac{1}{{x \pm \sqrt {{x^2} - 1} }})\]
On considering, \[\dfrac{1}{2}(x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \dfrac{1}{2}(\dfrac{{{{(x + \sqrt {{x^2} - 1} )}^2} - 1}}{{x + \sqrt {{x^2} - 1} }})\]
On applying, \[{{\text{(a + b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}\], we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{(}}\dfrac{{{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 1 + 2x}}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} {\text{ - 1}}}}{{{\text{x + }}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} }}{\text{)}}\]
\[ = \dfrac{1}{2}(\dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking 2 common, we get,
\[ = \dfrac{2}{2}(\dfrac{{{x^2} - 1 + x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking \[\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} \] common we get,
\[ = \sqrt {{x^2} - 1} (\dfrac{{\sqrt {{x^2} - 1} + x}}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \sqrt {{x^2} - 1} \]
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is, \[\sqrt {{x^2} - 1} \]
Hence the correct option is (C).
Note: You need to remember \[\sinh x = \dfrac{1}{2}({e^x} - {e^{ - x}})\] and \[\cosh x = \dfrac{1}{2}({e^x} + {e^{ - x}})\]. When we find \[{\cosh ^{ - 1}}x\] we take \[y = {\cosh ^{ - 1}}x\] to deal with our given problem. We need to know cos and sin function and \[cosh\] and \[sinh\] function are not the same.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Why should a magnesium ribbon be cleaned before burning class 12 chemistry CBSE

A renewable exhaustible natural resources is A Coal class 12 biology CBSE

Megasporangium is equivalent to a Embryo sac b Fruit class 12 biology CBSE

What is Zeises salt and ferrocene Explain with str class 12 chemistry CBSE

How to calculate power in series and parallel circ class 12 physics CBSE

Anal style is present in A Male cockroach B Female class 12 biology CBSE
