
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is
A. \[\sqrt {{x^2} + 1} \]
B. \[\dfrac{1}{{\sqrt {{x^2} + 1} }}\]
C. \[\sqrt {{x^2} - 1} \]
D. None of those
Answer
579k+ views
Hint: Firstly we simplify \[{\cosh ^{ - 1}}x\] and then analyze that the value of \[\sinh x\]. We need to describe \[\sinh x\] and \[\cosh x\] in terms of \[{e^x}\], and on simplification we get our answer.
We, also use the formula of Sridhar Archaya for \[a{x^2} + bx + c = 0\], we have, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step by step solution: We start with, \[x = \cosh y\]
We use the fact that \[\cos {\text{ }}hy = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
\[ \Rightarrow x = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
On simplifying further we get,
\[ \Rightarrow 2x = {e^y} + {e^{ - y}}\]
\[ \Rightarrow 2x = {e^y} + \dfrac{1}{{{e^y}}}\]
\[ \Rightarrow 2x = \dfrac{{{e^{2y}} + 1}}{{{e^y}}}\]
On cross multiplication we get,
\[ \Rightarrow {e^y}2x = {e^{2y}} + 1\]
\[ \Rightarrow {e^{2y}} - 2x{e^y} + 1 = 0\]
Let, \[{e^y} = u\],
\[ \Rightarrow {u^2} - 2xu + 1 = 0\]
By the formula of Sridhar Archaya, we have, for \[a{x^2} + bx + c = 0\], \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[ \Rightarrow u = \dfrac{{ - ( - 2x) \pm \sqrt {{{( - 2x)}^2} - 4.1.1} }}{2}\]
\[ \Rightarrow u = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2}\]
On taking 2 out of the root, we get,
\[ \Rightarrow u = \dfrac{{2x \pm 2\sqrt {{x^2} - 1} }}{2}\]
\[ \Rightarrow u = x \pm \sqrt {{x^2} - 1} \]
On Substituting the value of u, we get,
\[ \Rightarrow {e^y} = x \pm \sqrt {{x^2} - 1} \]
As both of these are positive, we get,
\[ \Rightarrow y = \ln (x \pm \sqrt {{x^2} - 1} )\]
Now, \[\sinh ({\cosh ^{ - 1}}x)\]
\[ = \sinh y\]
On substituting the value of y we get,
\[ = \sinh (\ln (x \pm \sqrt {{x^2} - 1} ))\]
Now as, \[\sinh x = \dfrac{{({e^x} - {e^{ - x}})}}{2}\],
So we get,
\[ = \dfrac{1}{2}({e^{(\ln (x \pm \sqrt {{x^2} - 1} ))}} - {e^{ - (\ln (x \pm \sqrt {{x^2} - 1} ))}})\]
As, \[{e^{\ln (x)}} = x\],
So we have,
\[ = \dfrac{1}{2}(x \pm \sqrt {{x^2} - 1} - \dfrac{1}{{x \pm \sqrt {{x^2} - 1} }})\]
On considering, \[\dfrac{1}{2}(x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \dfrac{1}{2}(\dfrac{{{{(x + \sqrt {{x^2} - 1} )}^2} - 1}}{{x + \sqrt {{x^2} - 1} }})\]
On applying, \[{{\text{(a + b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}\], we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{(}}\dfrac{{{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 1 + 2x}}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} {\text{ - 1}}}}{{{\text{x + }}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} }}{\text{)}}\]
\[ = \dfrac{1}{2}(\dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking 2 common, we get,
\[ = \dfrac{2}{2}(\dfrac{{{x^2} - 1 + x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking \[\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} \] common we get,
\[ = \sqrt {{x^2} - 1} (\dfrac{{\sqrt {{x^2} - 1} + x}}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \sqrt {{x^2} - 1} \]
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is, \[\sqrt {{x^2} - 1} \]
Hence the correct option is (C).
Note: You need to remember \[\sinh x = \dfrac{1}{2}({e^x} - {e^{ - x}})\] and \[\cosh x = \dfrac{1}{2}({e^x} + {e^{ - x}})\]. When we find \[{\cosh ^{ - 1}}x\] we take \[y = {\cosh ^{ - 1}}x\] to deal with our given problem. We need to know cos and sin function and \[cosh\] and \[sinh\] function are not the same.
We, also use the formula of Sridhar Archaya for \[a{x^2} + bx + c = 0\], we have, \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step by step solution: We start with, \[x = \cosh y\]
We use the fact that \[\cos {\text{ }}hy = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
\[ \Rightarrow x = \dfrac{{{e^y} + {e^{ - y}}}}{2}\]
On simplifying further we get,
\[ \Rightarrow 2x = {e^y} + {e^{ - y}}\]
\[ \Rightarrow 2x = {e^y} + \dfrac{1}{{{e^y}}}\]
\[ \Rightarrow 2x = \dfrac{{{e^{2y}} + 1}}{{{e^y}}}\]
On cross multiplication we get,
\[ \Rightarrow {e^y}2x = {e^{2y}} + 1\]
\[ \Rightarrow {e^{2y}} - 2x{e^y} + 1 = 0\]
Let, \[{e^y} = u\],
\[ \Rightarrow {u^2} - 2xu + 1 = 0\]
By the formula of Sridhar Archaya, we have, for \[a{x^2} + bx + c = 0\], \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[ \Rightarrow u = \dfrac{{ - ( - 2x) \pm \sqrt {{{( - 2x)}^2} - 4.1.1} }}{2}\]
\[ \Rightarrow u = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2}\]
On taking 2 out of the root, we get,
\[ \Rightarrow u = \dfrac{{2x \pm 2\sqrt {{x^2} - 1} }}{2}\]
\[ \Rightarrow u = x \pm \sqrt {{x^2} - 1} \]
On Substituting the value of u, we get,
\[ \Rightarrow {e^y} = x \pm \sqrt {{x^2} - 1} \]
As both of these are positive, we get,
\[ \Rightarrow y = \ln (x \pm \sqrt {{x^2} - 1} )\]
Now, \[\sinh ({\cosh ^{ - 1}}x)\]
\[ = \sinh y\]
On substituting the value of y we get,
\[ = \sinh (\ln (x \pm \sqrt {{x^2} - 1} ))\]
Now as, \[\sinh x = \dfrac{{({e^x} - {e^{ - x}})}}{2}\],
So we get,
\[ = \dfrac{1}{2}({e^{(\ln (x \pm \sqrt {{x^2} - 1} ))}} - {e^{ - (\ln (x \pm \sqrt {{x^2} - 1} ))}})\]
As, \[{e^{\ln (x)}} = x\],
So we have,
\[ = \dfrac{1}{2}(x \pm \sqrt {{x^2} - 1} - \dfrac{1}{{x \pm \sqrt {{x^2} - 1} }})\]
On considering, \[\dfrac{1}{2}(x + \sqrt {{x^2} - 1} - \dfrac{1}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \dfrac{1}{2}(\dfrac{{{{(x + \sqrt {{x^2} - 1} )}^2} - 1}}{{x + \sqrt {{x^2} - 1} }})\]
On applying, \[{{\text{(a + b)}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}\], we get,
\[{\text{ = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{(}}\dfrac{{{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{x}}^{\text{2}}}{\text{ - 1 + 2x}}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} {\text{ - 1}}}}{{{\text{x + }}\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} }}{\text{)}}\]
\[ = \dfrac{1}{2}(\dfrac{{2{x^2} - 2 + 2x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking 2 common, we get,
\[ = \dfrac{2}{2}(\dfrac{{{x^2} - 1 + x\sqrt {{x^2} - 1} }}{{x + \sqrt {{x^2} - 1} }})\]
On taking \[\sqrt {{{\text{x}}^{\text{2}}}{\text{ - 1}}} \] common we get,
\[ = \sqrt {{x^2} - 1} (\dfrac{{\sqrt {{x^2} - 1} + x}}{{x + \sqrt {{x^2} - 1} }})\]
On simplifying we get,
\[ = \sqrt {{x^2} - 1} \]
The value of \[\sinh ({\cosh ^{ - 1}}x)\]is, \[\sqrt {{x^2} - 1} \]
Hence the correct option is (C).
Note: You need to remember \[\sinh x = \dfrac{1}{2}({e^x} - {e^{ - x}})\] and \[\cosh x = \dfrac{1}{2}({e^x} + {e^{ - x}})\]. When we find \[{\cosh ^{ - 1}}x\] we take \[y = {\cosh ^{ - 1}}x\] to deal with our given problem. We need to know cos and sin function and \[cosh\] and \[sinh\] function are not the same.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

