The value of $ \sinh (3) $ $ - \cosh (3) $ $ = $
A. \[{e^{ - 3}}\]
B. \[ - {e^{ - 3}}\]
C. \[{e^3}\]
D. \[ - {e^3}\]
Answer
Verified
451.2k+ views
Hint: Now, in this question hyperbolic trigonometric functions of $ \cos $ and $ \sin $ are mentioned. The hyperbolic functions are to be written in the exponential functions. Thereafter we will have to simplify the obtained equation to find the trigonometric equation’s value.
Formula used: We will have to use the formula of hyperbolic cos function, $ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $ and hyperbolic sine function, $ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $ .
Complete step-by-step answer:
According to the given information, we have
The first function is $ A = $ $ \sinh (3) $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \sinh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ ...(1) $
The first function is $ B = $ $ \cosh (3) $
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \cosh (3) $ $ = \dfrac{{{e^3} + {e^{ - 3}}}}{2} $ $ ...(2) $
According to the given data we have to calculate $ \sinh (3) $ $ - \cosh (3) $ , which is equal to,
$ \sinh (3) $ $ - \cosh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ - \dfrac{{{e^3} + {e^{ - 3}}}}{2} $
\[ \Rightarrow \dfrac{{{e^3} - {e^{ - 3}} - ({e^3} - {e^{ - 3}})}}{2}\]
\[ \Rightarrow \dfrac{{ - 2{e^{ - 3}}}}{2}\]\[ = - {e^{ - 3}}\]
So, the correct answer is “Option B”.
Note: In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Hyperbolic functions are very similar to the trigonometric functions but are expressed in the form of exponential functions and the most common of them are $ \cosh x $ and $ \sinh x $ .
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Formula used: We will have to use the formula of hyperbolic cos function, $ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $ and hyperbolic sine function, $ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $ .
Complete step-by-step answer:
According to the given information, we have
The first function is $ A = $ $ \sinh (3) $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \sinh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ ...(1) $
The first function is $ B = $ $ \cosh (3) $
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \cosh (3) $ $ = \dfrac{{{e^3} + {e^{ - 3}}}}{2} $ $ ...(2) $
According to the given data we have to calculate $ \sinh (3) $ $ - \cosh (3) $ , which is equal to,
$ \sinh (3) $ $ - \cosh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ - \dfrac{{{e^3} + {e^{ - 3}}}}{2} $
\[ \Rightarrow \dfrac{{{e^3} - {e^{ - 3}} - ({e^3} - {e^{ - 3}})}}{2}\]
\[ \Rightarrow \dfrac{{ - 2{e^{ - 3}}}}{2}\]\[ = - {e^{ - 3}}\]
So, the correct answer is “Option B”.
Note: In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Hyperbolic functions are very similar to the trigonometric functions but are expressed in the form of exponential functions and the most common of them are $ \cosh x $ and $ \sinh x $ .
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Recently Updated Pages
A constant volume gas thermometer works on AThe principle class 11 chemistry CBSE
A beam balance is used to measure the of a body A Weight class 11 physics CBSE
If a particle moves in a circle describing equal angles class 11 physics CBSE
Nonmetals reacts with bases to form A Hydrogen B salt class 11 chemistry CBSE
Write a note on Parenchyma class 11 biology CBSE
Explain valence shell and penultimate shell class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE