
The value of $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$is equal to:
A.$\frac{2}{3}$
B.$\frac{1}{2}$
C.$\frac{1}{8}$
D.\[\frac{1}{3}\]
Answer
535.5k+ views
Use $\sin a\sin b$ formula in the first pair and $\sin ({90^ \circ } - \theta )$formula In the third try and try to solve.
Consider the given expression: $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$.We know the formula:
$\sin a\sin b = \frac{1}{2}[\cos (a - b) - \cos (a + b)]$, where consider,$a = {48^ \circ },b = {12^ \circ }$. Putting the values in the given expression will give us,
$
(\sin {12^ \circ }\sin {48^ \circ })\sin {54^ \circ } \\
\Rightarrow \frac{1}{2}(\cos ({48^ \circ } - {12^ \circ }) - \cos ({48^ \circ } + {12^ \circ }))\sin ({90^ \circ } - {36^ \circ })\;{\text{ [Using }}\sin a\sin b{\text{ and sin(}}{90^ \circ } - \theta {\text{) formula]}} \\
\Rightarrow \frac{1}{2}(\cos {36^ \circ } - \cos {60^ \circ })\cos {36^ \circ }{\text{ [}}\cos ( - x) = \cos x{\text{ and }}\sin ({90^ \circ } - x) = \cos x{\text{]}} \\
\Rightarrow \frac{1}{2}(\frac{{\sqrt 5 + 1}}{4} - \frac{1}{2})(\frac{{\sqrt 5 + 1}}{4}){\text{ [}}\cos {36^ \circ } = \frac{{\sqrt 5 + 1}}{4}{\text{]}} \\
\Rightarrow \frac{1}{{2 \times 4 \times 4}}(\sqrt 5 + 1 - 2)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}(\sqrt 5 - 1)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}({(\sqrt 5 )^2} - {1^2}){\text{ [}}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
\Rightarrow \frac{1}{{32}}(5 - 1) \\
\Rightarrow \frac{1}{{32}} \times 4 \\
\Rightarrow \frac{1}{8} \\
$
And hence,$\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ } = \frac{1}{8}$
Note: Always try to use pairing of angles and find, which formula is suitable to start with. Once you start with the correct formula solution becomes easy.
Consider the given expression: $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$.We know the formula:
$\sin a\sin b = \frac{1}{2}[\cos (a - b) - \cos (a + b)]$, where consider,$a = {48^ \circ },b = {12^ \circ }$. Putting the values in the given expression will give us,
$
(\sin {12^ \circ }\sin {48^ \circ })\sin {54^ \circ } \\
\Rightarrow \frac{1}{2}(\cos ({48^ \circ } - {12^ \circ }) - \cos ({48^ \circ } + {12^ \circ }))\sin ({90^ \circ } - {36^ \circ })\;{\text{ [Using }}\sin a\sin b{\text{ and sin(}}{90^ \circ } - \theta {\text{) formula]}} \\
\Rightarrow \frac{1}{2}(\cos {36^ \circ } - \cos {60^ \circ })\cos {36^ \circ }{\text{ [}}\cos ( - x) = \cos x{\text{ and }}\sin ({90^ \circ } - x) = \cos x{\text{]}} \\
\Rightarrow \frac{1}{2}(\frac{{\sqrt 5 + 1}}{4} - \frac{1}{2})(\frac{{\sqrt 5 + 1}}{4}){\text{ [}}\cos {36^ \circ } = \frac{{\sqrt 5 + 1}}{4}{\text{]}} \\
\Rightarrow \frac{1}{{2 \times 4 \times 4}}(\sqrt 5 + 1 - 2)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}(\sqrt 5 - 1)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}({(\sqrt 5 )^2} - {1^2}){\text{ [}}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
\Rightarrow \frac{1}{{32}}(5 - 1) \\
\Rightarrow \frac{1}{{32}} \times 4 \\
\Rightarrow \frac{1}{8} \\
$
And hence,$\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ } = \frac{1}{8}$
Note: Always try to use pairing of angles and find, which formula is suitable to start with. Once you start with the correct formula solution becomes easy.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
