Question
Answers

The value of $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$is equal to:
A.$\frac{2}{3}$
B.$\frac{1}{2}$
C.$\frac{1}{8}$
D.\[\frac{1}{3}\]

Answer Verified Verified
Use $\sin a\sin b$ formula in the first pair and $\sin ({90^ \circ } - \theta )$formula In the third try and try to solve.

 Consider the given expression: $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$.We know the formula:
$\sin a\sin b = \frac{1}{2}[\cos (a - b) - \cos (a + b)]$, where consider,$a = {48^ \circ },b = {12^ \circ }$. Putting the values in the given expression will give us,
$
  (\sin {12^ \circ }\sin {48^ \circ })\sin {54^ \circ } \\
   \Rightarrow \frac{1}{2}(\cos ({48^ \circ } - {12^ \circ }) - \cos ({48^ \circ } + {12^ \circ }))\sin ({90^ \circ } - {36^ \circ })\;{\text{ [Using }}\sin a\sin b{\text{ and sin(}}{90^ \circ } - \theta {\text{) formula]}} \\
   \Rightarrow \frac{1}{2}(\cos {36^ \circ } - \cos {60^ \circ })\cos {36^ \circ }{\text{ [}}\cos ( - x) = \cos x{\text{ and }}\sin ({90^ \circ } - x) = \cos x{\text{]}} \\
   \Rightarrow \frac{1}{2}(\frac{{\sqrt 5 + 1}}{4} - \frac{1}{2})(\frac{{\sqrt 5 + 1}}{4}){\text{ [}}\cos {36^ \circ } = \frac{{\sqrt 5 + 1}}{4}{\text{]}} \\
   \Rightarrow \frac{1}{{2 \times 4 \times 4}}(\sqrt 5 + 1 - 2)(\sqrt 5 + 1) \\
   \Rightarrow \frac{1}{{32}}(\sqrt 5 - 1)(\sqrt 5 + 1) \\
   \Rightarrow \frac{1}{{32}}({(\sqrt 5 )^2} - {1^2}){\text{ [}}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
   \Rightarrow \frac{1}{{32}}(5 - 1) \\
   \Rightarrow \frac{1}{{32}} \times 4 \\
   \Rightarrow \frac{1}{8} \\
$
And hence,$\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ } = \frac{1}{8}$

Note: Always try to use pairing of angles and find, which formula is suitable to start with. Once you start with the correct formula solution becomes easy.

Bookmark added to your notes.
View Notes
×