
The value of $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$is equal to:
A.$\frac{2}{3}$
B.$\frac{1}{2}$
C.$\frac{1}{8}$
D.\[\frac{1}{3}\]
Answer
608.7k+ views
Use $\sin a\sin b$ formula in the first pair and $\sin ({90^ \circ } - \theta )$formula In the third try and try to solve.
Consider the given expression: $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$.We know the formula:
$\sin a\sin b = \frac{1}{2}[\cos (a - b) - \cos (a + b)]$, where consider,$a = {48^ \circ },b = {12^ \circ }$. Putting the values in the given expression will give us,
$
(\sin {12^ \circ }\sin {48^ \circ })\sin {54^ \circ } \\
\Rightarrow \frac{1}{2}(\cos ({48^ \circ } - {12^ \circ }) - \cos ({48^ \circ } + {12^ \circ }))\sin ({90^ \circ } - {36^ \circ })\;{\text{ [Using }}\sin a\sin b{\text{ and sin(}}{90^ \circ } - \theta {\text{) formula]}} \\
\Rightarrow \frac{1}{2}(\cos {36^ \circ } - \cos {60^ \circ })\cos {36^ \circ }{\text{ [}}\cos ( - x) = \cos x{\text{ and }}\sin ({90^ \circ } - x) = \cos x{\text{]}} \\
\Rightarrow \frac{1}{2}(\frac{{\sqrt 5 + 1}}{4} - \frac{1}{2})(\frac{{\sqrt 5 + 1}}{4}){\text{ [}}\cos {36^ \circ } = \frac{{\sqrt 5 + 1}}{4}{\text{]}} \\
\Rightarrow \frac{1}{{2 \times 4 \times 4}}(\sqrt 5 + 1 - 2)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}(\sqrt 5 - 1)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}({(\sqrt 5 )^2} - {1^2}){\text{ [}}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
\Rightarrow \frac{1}{{32}}(5 - 1) \\
\Rightarrow \frac{1}{{32}} \times 4 \\
\Rightarrow \frac{1}{8} \\
$
And hence,$\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ } = \frac{1}{8}$
Note: Always try to use pairing of angles and find, which formula is suitable to start with. Once you start with the correct formula solution becomes easy.
Consider the given expression: $\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ }$.We know the formula:
$\sin a\sin b = \frac{1}{2}[\cos (a - b) - \cos (a + b)]$, where consider,$a = {48^ \circ },b = {12^ \circ }$. Putting the values in the given expression will give us,
$
(\sin {12^ \circ }\sin {48^ \circ })\sin {54^ \circ } \\
\Rightarrow \frac{1}{2}(\cos ({48^ \circ } - {12^ \circ }) - \cos ({48^ \circ } + {12^ \circ }))\sin ({90^ \circ } - {36^ \circ })\;{\text{ [Using }}\sin a\sin b{\text{ and sin(}}{90^ \circ } - \theta {\text{) formula]}} \\
\Rightarrow \frac{1}{2}(\cos {36^ \circ } - \cos {60^ \circ })\cos {36^ \circ }{\text{ [}}\cos ( - x) = \cos x{\text{ and }}\sin ({90^ \circ } - x) = \cos x{\text{]}} \\
\Rightarrow \frac{1}{2}(\frac{{\sqrt 5 + 1}}{4} - \frac{1}{2})(\frac{{\sqrt 5 + 1}}{4}){\text{ [}}\cos {36^ \circ } = \frac{{\sqrt 5 + 1}}{4}{\text{]}} \\
\Rightarrow \frac{1}{{2 \times 4 \times 4}}(\sqrt 5 + 1 - 2)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}(\sqrt 5 - 1)(\sqrt 5 + 1) \\
\Rightarrow \frac{1}{{32}}({(\sqrt 5 )^2} - {1^2}){\text{ [}}{a^2} - {b^2} = (a + b)(a - b){\text{]}} \\
\Rightarrow \frac{1}{{32}}(5 - 1) \\
\Rightarrow \frac{1}{{32}} \times 4 \\
\Rightarrow \frac{1}{8} \\
$
And hence,$\sin {12^ \circ }\sin {48^ \circ }\sin {54^ \circ } = \frac{1}{8}$
Note: Always try to use pairing of angles and find, which formula is suitable to start with. Once you start with the correct formula solution becomes easy.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

