Answer

Verified

447.9k+ views

**Hint**: We have to evaluate the value of \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] first and we use reciprocal identity \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.\] Then we add the term by using the identity \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and in the end we again use the reciprocal identity to get the solution in standard form as asked.

**:**

__Complete step-by-step answer__We have to find the value of \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta .\] We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta },\] and we have seen that \[\sec \theta =\dfrac{1}{\cos \theta }.\]

Using this in \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ,\] we have,

\[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ={{\left( \dfrac{1}{\sin \theta } \right)}^{2}}+{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]

As \[{{\left( \theta \right)}^{2}}={{\theta }^{2}}\] we get,

\[\Rightarrow {{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta =\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }\]

Now we take the LCM of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] to add the terms

\[\Rightarrow \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]

As we know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] we get,

\[\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]

We also know that \[{{a}^{2}}={{\left( a \right)}^{2}}\]

\[\Rightarrow {{\left( \dfrac{1}{\sin \theta } \right)}^{2}}{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]

Again using the reciprocal identity, we know that,

\[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta \]

\[\dfrac{1}{\cos \theta }=sec\theta \]

We get,

\[={{\left( \operatorname{cosec}\theta \right)}^{2}}.{{\left( \sec \theta \right)}^{2}}\]

\[={{\operatorname{cosec}}^{2}}\theta .{{\sec }^{2}}\theta \]

**So, the correct answer is “Option B”.**

**Note**: We can check how other options are not correct solutions. Let us take \[\theta ={{45}^{\circ }}.\]

\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta ={{\tan }^{2}}{{45}^{\circ }}+{{\cot }^{2}}{{45}^{\circ }}\]

We know that \[\tan {{45}^{\circ }}=\cot {{45}^{\circ }}=1.\]

\[\Rightarrow 1+1=2\]

While at \[\theta ={{45}^{\circ }},\]

\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\sec }^{2}}{{45}^{\circ }}+{{\operatorname{cosec}}^{2}}{{45}^{\circ }}\]

We know that \[\sec {{45}^{\circ }}=\cos {{45}^{\circ }}=\sqrt{2}\]

\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}\]

\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2+2\]

\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4........\left( i \right)\]

Therefore, we get that \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is not equal to \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta .\]

\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]

At \[\theta ={{45}^{\circ }},\] we know that,

\[\Rightarrow \sec {{45}^{\circ }}=\operatorname{cosec}{{45}^{\circ }}=\sqrt{2}\]

So, we get,

\[\sec \theta .\operatorname{cosec}\theta =\sqrt{2}\times \sqrt{2}\]

\[\Rightarrow \sec \theta .\operatorname{cosec}\theta =2\]

Again using (i) and the above value, we get, \[\sec \theta .\operatorname{cosec}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]

\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]

At \[\theta ={{45}^{\circ }},\] we get,

\[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\sin }^{2}}{{45}^{\circ }}.{{\cos }^{2}}{{45}^{\circ }}\]

As, \[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\] we get,

\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\times {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]

\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{2}\times \dfrac{1}{2}\]

Solving further, we get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{4}\] at \[\theta ={{45}^{\circ }}.\]

So using (i) and above, we again get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]

(e) 1

At \[\theta ={{45}^{\circ }},\] 1 is always 1.

But from (i), we have

\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4\] at \[\theta ={{45}^{\circ }}.\]

So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]

So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How do you graph the function fx 4x class 9 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE