
The value of \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is equal to
\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta \]
\[\left( b \right){{\sec }^{2}}\theta .{{\operatorname{cosec}}^{2}}\theta \]
\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]
\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
\[\left( e \right)1\]
Answer
579.6k+ views
Hint: We have to evaluate the value of \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] first and we use reciprocal identity \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.\] Then we add the term by using the identity \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and in the end we again use the reciprocal identity to get the solution in standard form as asked.
Complete step-by-step answer:
We have to find the value of \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta .\] We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta },\] and we have seen that \[\sec \theta =\dfrac{1}{\cos \theta }.\]
Using this in \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ,\] we have,
\[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ={{\left( \dfrac{1}{\sin \theta } \right)}^{2}}+{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
As \[{{\left( \theta \right)}^{2}}={{\theta }^{2}}\] we get,
\[\Rightarrow {{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta =\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }\]
Now we take the LCM of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] to add the terms
\[\Rightarrow \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
As we know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] we get,
\[\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
We also know that \[{{a}^{2}}={{\left( a \right)}^{2}}\]
\[\Rightarrow {{\left( \dfrac{1}{\sin \theta } \right)}^{2}}{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
Again using the reciprocal identity, we know that,
\[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta \]
\[\dfrac{1}{\cos \theta }=sec\theta \]
We get,
\[={{\left( \operatorname{cosec}\theta \right)}^{2}}.{{\left( \sec \theta \right)}^{2}}\]
\[={{\operatorname{cosec}}^{2}}\theta .{{\sec }^{2}}\theta \]
So, the correct answer is “Option B”.
Note: We can check how other options are not correct solutions. Let us take \[\theta ={{45}^{\circ }}.\]
\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta ={{\tan }^{2}}{{45}^{\circ }}+{{\cot }^{2}}{{45}^{\circ }}\]
We know that \[\tan {{45}^{\circ }}=\cot {{45}^{\circ }}=1.\]
\[\Rightarrow 1+1=2\]
While at \[\theta ={{45}^{\circ }},\]
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\sec }^{2}}{{45}^{\circ }}+{{\operatorname{cosec}}^{2}}{{45}^{\circ }}\]
We know that \[\sec {{45}^{\circ }}=\cos {{45}^{\circ }}=\sqrt{2}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2+2\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4........\left( i \right)\]
Therefore, we get that \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is not equal to \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta .\]
\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]
At \[\theta ={{45}^{\circ }},\] we know that,
\[\Rightarrow \sec {{45}^{\circ }}=\operatorname{cosec}{{45}^{\circ }}=\sqrt{2}\]
So, we get,
\[\sec \theta .\operatorname{cosec}\theta =\sqrt{2}\times \sqrt{2}\]
\[\Rightarrow \sec \theta .\operatorname{cosec}\theta =2\]
Again using (i) and the above value, we get, \[\sec \theta .\operatorname{cosec}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
At \[\theta ={{45}^{\circ }},\] we get,
\[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\sin }^{2}}{{45}^{\circ }}.{{\cos }^{2}}{{45}^{\circ }}\]
As, \[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\] we get,
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\times {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{2}\times \dfrac{1}{2}\]
Solving further, we get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{4}\] at \[\theta ={{45}^{\circ }}.\]
So using (i) and above, we again get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
(e) 1
At \[\theta ={{45}^{\circ }},\] 1 is always 1.
But from (i), we have
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4\] at \[\theta ={{45}^{\circ }}.\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
Complete step-by-step answer:
We have to find the value of \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta .\] We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta },\] and we have seen that \[\sec \theta =\dfrac{1}{\cos \theta }.\]
Using this in \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ,\] we have,
\[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ={{\left( \dfrac{1}{\sin \theta } \right)}^{2}}+{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
As \[{{\left( \theta \right)}^{2}}={{\theta }^{2}}\] we get,
\[\Rightarrow {{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta =\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }\]
Now we take the LCM of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] to add the terms
\[\Rightarrow \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
As we know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] we get,
\[\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
We also know that \[{{a}^{2}}={{\left( a \right)}^{2}}\]
\[\Rightarrow {{\left( \dfrac{1}{\sin \theta } \right)}^{2}}{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
Again using the reciprocal identity, we know that,
\[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta \]
\[\dfrac{1}{\cos \theta }=sec\theta \]
We get,
\[={{\left( \operatorname{cosec}\theta \right)}^{2}}.{{\left( \sec \theta \right)}^{2}}\]
\[={{\operatorname{cosec}}^{2}}\theta .{{\sec }^{2}}\theta \]
So, the correct answer is “Option B”.
Note: We can check how other options are not correct solutions. Let us take \[\theta ={{45}^{\circ }}.\]
\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta ={{\tan }^{2}}{{45}^{\circ }}+{{\cot }^{2}}{{45}^{\circ }}\]
We know that \[\tan {{45}^{\circ }}=\cot {{45}^{\circ }}=1.\]
\[\Rightarrow 1+1=2\]
While at \[\theta ={{45}^{\circ }},\]
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\sec }^{2}}{{45}^{\circ }}+{{\operatorname{cosec}}^{2}}{{45}^{\circ }}\]
We know that \[\sec {{45}^{\circ }}=\cos {{45}^{\circ }}=\sqrt{2}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2+2\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4........\left( i \right)\]
Therefore, we get that \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is not equal to \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta .\]
\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]
At \[\theta ={{45}^{\circ }},\] we know that,
\[\Rightarrow \sec {{45}^{\circ }}=\operatorname{cosec}{{45}^{\circ }}=\sqrt{2}\]
So, we get,
\[\sec \theta .\operatorname{cosec}\theta =\sqrt{2}\times \sqrt{2}\]
\[\Rightarrow \sec \theta .\operatorname{cosec}\theta =2\]
Again using (i) and the above value, we get, \[\sec \theta .\operatorname{cosec}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
At \[\theta ={{45}^{\circ }},\] we get,
\[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\sin }^{2}}{{45}^{\circ }}.{{\cos }^{2}}{{45}^{\circ }}\]
As, \[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\] we get,
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\times {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{2}\times \dfrac{1}{2}\]
Solving further, we get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{4}\] at \[\theta ={{45}^{\circ }}.\]
So using (i) and above, we again get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
(e) 1
At \[\theta ={{45}^{\circ }},\] 1 is always 1.
But from (i), we have
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4\] at \[\theta ={{45}^{\circ }}.\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

