The value of \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is equal to
\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta \]
\[\left( b \right){{\sec }^{2}}\theta .{{\operatorname{cosec}}^{2}}\theta \]
\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]
\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
\[\left( e \right)1\]
Answer
Verified
479.1k+ views
Hint: We have to evaluate the value of \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] first and we use reciprocal identity \[\sec \theta =\dfrac{1}{\cos \theta }\] and \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }.\] Then we add the term by using the identity \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] and in the end we again use the reciprocal identity to get the solution in standard form as asked.
Complete step-by-step answer:
We have to find the value of \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta .\] We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta },\] and we have seen that \[\sec \theta =\dfrac{1}{\cos \theta }.\]
Using this in \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ,\] we have,
\[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ={{\left( \dfrac{1}{\sin \theta } \right)}^{2}}+{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
As \[{{\left( \theta \right)}^{2}}={{\theta }^{2}}\] we get,
\[\Rightarrow {{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta =\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }\]
Now we take the LCM of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] to add the terms
\[\Rightarrow \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
As we know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] we get,
\[\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
We also know that \[{{a}^{2}}={{\left( a \right)}^{2}}\]
\[\Rightarrow {{\left( \dfrac{1}{\sin \theta } \right)}^{2}}{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
Again using the reciprocal identity, we know that,
\[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta \]
\[\dfrac{1}{\cos \theta }=sec\theta \]
We get,
\[={{\left( \operatorname{cosec}\theta \right)}^{2}}.{{\left( \sec \theta \right)}^{2}}\]
\[={{\operatorname{cosec}}^{2}}\theta .{{\sec }^{2}}\theta \]
So, the correct answer is “Option B”.
Note: We can check how other options are not correct solutions. Let us take \[\theta ={{45}^{\circ }}.\]
\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta ={{\tan }^{2}}{{45}^{\circ }}+{{\cot }^{2}}{{45}^{\circ }}\]
We know that \[\tan {{45}^{\circ }}=\cot {{45}^{\circ }}=1.\]
\[\Rightarrow 1+1=2\]
While at \[\theta ={{45}^{\circ }},\]
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\sec }^{2}}{{45}^{\circ }}+{{\operatorname{cosec}}^{2}}{{45}^{\circ }}\]
We know that \[\sec {{45}^{\circ }}=\cos {{45}^{\circ }}=\sqrt{2}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2+2\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4........\left( i \right)\]
Therefore, we get that \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is not equal to \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta .\]
\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]
At \[\theta ={{45}^{\circ }},\] we know that,
\[\Rightarrow \sec {{45}^{\circ }}=\operatorname{cosec}{{45}^{\circ }}=\sqrt{2}\]
So, we get,
\[\sec \theta .\operatorname{cosec}\theta =\sqrt{2}\times \sqrt{2}\]
\[\Rightarrow \sec \theta .\operatorname{cosec}\theta =2\]
Again using (i) and the above value, we get, \[\sec \theta .\operatorname{cosec}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
At \[\theta ={{45}^{\circ }},\] we get,
\[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\sin }^{2}}{{45}^{\circ }}.{{\cos }^{2}}{{45}^{\circ }}\]
As, \[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\] we get,
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\times {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{2}\times \dfrac{1}{2}\]
Solving further, we get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{4}\] at \[\theta ={{45}^{\circ }}.\]
So using (i) and above, we again get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
(e) 1
At \[\theta ={{45}^{\circ }},\] 1 is always 1.
But from (i), we have
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4\] at \[\theta ={{45}^{\circ }}.\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
Complete step-by-step answer:
We have to find the value of \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta .\] We know that \[\operatorname{cosec}\theta =\dfrac{1}{\sin \theta },\] and we have seen that \[\sec \theta =\dfrac{1}{\cos \theta }.\]
Using this in \[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ,\] we have,
\[{{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta ={{\left( \dfrac{1}{\sin \theta } \right)}^{2}}+{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
As \[{{\left( \theta \right)}^{2}}={{\theta }^{2}}\] we get,
\[\Rightarrow {{\operatorname{cosec}}^{2}}\theta +{{\sec }^{2}}\theta =\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }\]
Now we take the LCM of \[{{\sin }^{2}}\theta \] and \[{{\cos }^{2}}\theta \] to add the terms
\[\Rightarrow \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
As we know that \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] we get,
\[\Rightarrow \dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }\]
We also know that \[{{a}^{2}}={{\left( a \right)}^{2}}\]
\[\Rightarrow {{\left( \dfrac{1}{\sin \theta } \right)}^{2}}{{\left( \dfrac{1}{\cos \theta } \right)}^{2}}\]
Again using the reciprocal identity, we know that,
\[\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta \]
\[\dfrac{1}{\cos \theta }=sec\theta \]
We get,
\[={{\left( \operatorname{cosec}\theta \right)}^{2}}.{{\left( \sec \theta \right)}^{2}}\]
\[={{\operatorname{cosec}}^{2}}\theta .{{\sec }^{2}}\theta \]
So, the correct answer is “Option B”.
Note: We can check how other options are not correct solutions. Let us take \[\theta ={{45}^{\circ }}.\]
\[\left( a \right){{\tan }^{2}}\theta +{{\cot }^{2}}\theta ={{\tan }^{2}}{{45}^{\circ }}+{{\cot }^{2}}{{45}^{\circ }}\]
We know that \[\tan {{45}^{\circ }}=\cot {{45}^{\circ }}=1.\]
\[\Rightarrow 1+1=2\]
While at \[\theta ={{45}^{\circ }},\]
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\sec }^{2}}{{45}^{\circ }}+{{\operatorname{cosec}}^{2}}{{45}^{\circ }}\]
We know that \[\sec {{45}^{\circ }}=\cos {{45}^{\circ }}=\sqrt{2}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{\left( \sqrt{2} \right)}^{2}}+{{\left( \sqrt{2} \right)}^{2}}\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2+2\]
\[\Rightarrow {{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4........\left( i \right)\]
Therefore, we get that \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta \] is not equal to \[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta .\]
\[\left( c \right)\sec \theta .\operatorname{cosec}\theta \]
At \[\theta ={{45}^{\circ }},\] we know that,
\[\Rightarrow \sec {{45}^{\circ }}=\operatorname{cosec}{{45}^{\circ }}=\sqrt{2}\]
So, we get,
\[\sec \theta .\operatorname{cosec}\theta =\sqrt{2}\times \sqrt{2}\]
\[\Rightarrow \sec \theta .\operatorname{cosec}\theta =2\]
Again using (i) and the above value, we get, \[\sec \theta .\operatorname{cosec}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
\[\left( d \right){{\sin }^{2}}\theta .{{\cos }^{2}}\theta \]
At \[\theta ={{45}^{\circ }},\] we get,
\[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\sin }^{2}}{{45}^{\circ }}.{{\cos }^{2}}{{45}^{\circ }}\]
As, \[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\] we get,
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta ={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\times {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]
\[\Rightarrow {{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{2}\times \dfrac{1}{2}\]
Solving further, we get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta =\dfrac{1}{4}\] at \[\theta ={{45}^{\circ }}.\]
So using (i) and above, we again get, \[{{\sin }^{2}}\theta .{{\cos }^{2}}\theta \] is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
(e) 1
At \[\theta ={{45}^{\circ }},\] 1 is always 1.
But from (i), we have
\[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =4\] at \[\theta ={{45}^{\circ }}.\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
So, 1 is not equal to \[{{\sec }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta .\]
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE