Answer
Verified
366.3k+ views
Hint: Here in this question, we have to determine the given limit of a function. To find this first we have to write the given function using a trigonometric double or half angle formula \[\cos 2x = 1 - 2{\sin ^2}x\] then limit of a function \[f\] Which is satisfies the condition left hand limit is equal to right hand limit (i.e., \[LHL = RHL\]) by applying a limit in to the function using the properties of limits, otherwise limits doesn’t exist
Complete step by step solution:
The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.
A left-hand limit means the limit of a function as it approaches from the left-hand side.
\[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_1}\]
A right-hand limit means the limit of a function as it approaches from the right-hand side.
\[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = {l_2}\]
Consider the given limit function,
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}\]------(1)
By using a double of half angle formula: \[\cos 2x = 1 - 2{\sin ^2}x \Rightarrow 1 - \cos x = 2{\sin ^2}\dfrac{x}{2}\], then
As we know, \[\sqrt {1 - \cos x} = \left\{ {\begin{array}{*{20}{c}}
{ - \sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x < 0} \\
{\,\,\sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x \geqslant 0}
\end{array}} \right.\]
Now, find the left-hand limit to the function (1)
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} - \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}\]
By applying a properties of limit function, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x}\]
Multiply and divide by \[\dfrac{1}{2}\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
Again, by the properties of limit, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
As we know the standard limit \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{1}{{\sqrt 2 }}\]---------(2)
Now, find the right-hand limit to the function (1)
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}\]
By applying a properties of limit function, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x}\]
Multiply and divide by \[\dfrac{1}{2}\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
Again, by the properties of limit, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
As we know the standard limit \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \dfrac{1}{{\sqrt 2 }}\]---------(3)
Since, by (2) and (3)
\[\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x} \ne \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[LHL \ne RHL\]
Hence, limit does not exist
Therefore, option (D) is correct
So, the correct answer is “Option D”.
Note: Remember, the limit of any function exists between any two consecutive integers. And the product and quotient properties of limits are defined as:
The function \[f\left( x \right)\] and \[g\left( x \right)\] is are non-zero finite values, given that
\[\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\]
\[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\] and
Also \[\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right)\].
Complete step by step solution:
The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.
A left-hand limit means the limit of a function as it approaches from the left-hand side.
\[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_1}\]
A right-hand limit means the limit of a function as it approaches from the right-hand side.
\[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = {l_2}\]
Consider the given limit function,
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}\]------(1)
By using a double of half angle formula: \[\cos 2x = 1 - 2{\sin ^2}x \Rightarrow 1 - \cos x = 2{\sin ^2}\dfrac{x}{2}\], then
As we know, \[\sqrt {1 - \cos x} = \left\{ {\begin{array}{*{20}{c}}
{ - \sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x < 0} \\
{\,\,\sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x \geqslant 0}
\end{array}} \right.\]
Now, find the left-hand limit to the function (1)
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} - \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}\]
By applying a properties of limit function, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x}\]
Multiply and divide by \[\dfrac{1}{2}\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
Again, by the properties of limit, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
As we know the standard limit \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{1}{{\sqrt 2 }}\]---------(2)
Now, find the right-hand limit to the function (1)
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}\]
By applying a properties of limit function, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x}\]
Multiply and divide by \[\dfrac{1}{2}\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
Again, by the properties of limit, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
As we know the standard limit \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \dfrac{1}{{\sqrt 2 }}\]---------(3)
Since, by (2) and (3)
\[\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x} \ne \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[LHL \ne RHL\]
Hence, limit does not exist
Therefore, option (D) is correct
So, the correct answer is “Option D”.
Note: Remember, the limit of any function exists between any two consecutive integers. And the product and quotient properties of limits are defined as:
The function \[f\left( x \right)\] and \[g\left( x \right)\] is are non-zero finite values, given that
\[\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\]
\[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\] and
Also \[\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right)\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE