Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# The value of $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}$ is equal toA.$- \dfrac{1}{{\sqrt 2 }}$B.$\dfrac{1}{{\sqrt 2 }}$C.$0$D.Does not exist

Last updated date: 18th Sep 2024
Total views: 366.3k
Views today: 9.66k
Verified
366.3k+ views
Hint: Here in this question, we have to determine the given limit of a function. To find this first we have to write the given function using a trigonometric double or half angle formula $\cos 2x = 1 - 2{\sin ^2}x$ then limit of a function $f$ Which is satisfies the condition left hand limit is equal to right hand limit (i.e., $LHL = RHL$) by applying a limit in to the function using the properties of limits, otherwise limits doesn’t exist

Complete step by step solution:
The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.
A left-hand limit means the limit of a function as it approaches from the left-hand side.
$\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_1}$
A right-hand limit means the limit of a function as it approaches from the right-hand side.
$\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = {l_2}$
Consider the given limit function,
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}$------(1)
By using a double of half angle formula: $\cos 2x = 1 - 2{\sin ^2}x \Rightarrow 1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$, then
As we know, $\sqrt {1 - \cos x} = \left\{ {\begin{array}{*{20}{c}} { - \sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x < 0} \\ {\,\,\sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x \geqslant 0} \end{array}} \right.$
Now, find the left-hand limit to the function (1)
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x}$
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} - \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}$
By applying a properties of limit function, we have
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x}$
Multiply and divide by $\dfrac{1}{2}$, then
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}$
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}$
Again, by the properties of limit, we have
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}$
As we know the standard limit $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$, then
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}$
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{1}{{\sqrt 2 }}$---------(2)
Now, find the right-hand limit to the function (1)
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}$
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}$
By applying a properties of limit function, we have
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x}$
Multiply and divide by $\dfrac{1}{2}$, then
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}$
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}$
Again, by the properties of limit, we have
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}$
As we know the standard limit $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$, then
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}$
$\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \dfrac{1}{{\sqrt 2 }}$---------(3)
Since, by (2) and (3)
$\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x} \ne \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}$
$LHL \ne RHL$
Hence, limit does not exist
Therefore, option (D) is correct
So, the correct answer is “Option D”.

Note: Remember, the limit of any function exists between any two consecutive integers. And the product and quotient properties of limits are defined as:
The function $f\left( x \right)$ and $g\left( x \right)$ is are non-zero finite values, given that
$\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)$
$\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}$ and
Also $\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right)$.