
The value of \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\] is
(a)1
(b)\[\dfrac{3}{2}\]
(c)\[\dfrac{5}{6}\]
(d)\[\dfrac{7}{{12}}\]
Answer
580.8k+ views
Hint: Here, we will first use the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the given expression and then taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\] to find the required value.
Complete step-by-step answer:
We are given \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\].
Using the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the above expression, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}} \right]{{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{2{n^3} + 3{n^2} + n}}{6}} \right]\left[ {\dfrac{{{n^4} + 2{n^3} + {n^2}}}{4}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{\left[ {\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{24}}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{42\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{24\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{4\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\]
Dividing the numerator and denominator by \[{n^7}\] in right side of the above equation, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7}}}{{{n^7}}} + \dfrac{{4{n^6}}}{{{n^7}}} + \dfrac{{2{n^5}}}{{{n^7}}} + \dfrac{{3{n^6}}}{{{n^7}}} + \dfrac{{6{n^5}}}{{{n^7}}} + \dfrac{{3{n^4}}}{{{n^7}}} + \dfrac{{{n^5}}}{{{n^7}}} + \dfrac{{2{n^4}}}{{{n^7}}} + \dfrac{{{n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7}}}{{{n^7}}} + \dfrac{{21{n^6}}}{{{n^7}}} + \dfrac{{21{n^5}}}{{{n^7}}} - \dfrac{{7{n^3}}}{{{n^7}}} + \dfrac{n}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right]}}{{4\left[ {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right]}} \\
\]
When taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\], we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7\left[ {2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0} \right]}}{{4\left[ {6 + 0 + 0 - 0 + 0} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7 \cdot 2}}{{4 \cdot 6}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{{12}} \\
\]
Note: Whenever we face such types of questions on summation problems, students must remember the basic summation formulae of the series. Students must not get confused with the values of sums, as the main part of the question will be over then.
Complete step-by-step answer:
We are given \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\].
Using the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the above expression, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}} \right]{{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{2{n^3} + 3{n^2} + n}}{6}} \right]\left[ {\dfrac{{{n^4} + 2{n^3} + {n^2}}}{4}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{\left[ {\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{24}}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{42\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{24\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{4\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\]
Dividing the numerator and denominator by \[{n^7}\] in right side of the above equation, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7}}}{{{n^7}}} + \dfrac{{4{n^6}}}{{{n^7}}} + \dfrac{{2{n^5}}}{{{n^7}}} + \dfrac{{3{n^6}}}{{{n^7}}} + \dfrac{{6{n^5}}}{{{n^7}}} + \dfrac{{3{n^4}}}{{{n^7}}} + \dfrac{{{n^5}}}{{{n^7}}} + \dfrac{{2{n^4}}}{{{n^7}}} + \dfrac{{{n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7}}}{{{n^7}}} + \dfrac{{21{n^6}}}{{{n^7}}} + \dfrac{{21{n^5}}}{{{n^7}}} - \dfrac{{7{n^3}}}{{{n^7}}} + \dfrac{n}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right]}}{{4\left[ {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right]}} \\
\]
When taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\], we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7\left[ {2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0} \right]}}{{4\left[ {6 + 0 + 0 - 0 + 0} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7 \cdot 2}}{{4 \cdot 6}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{{12}} \\
\]
Note: Whenever we face such types of questions on summation problems, students must remember the basic summation formulae of the series. Students must not get confused with the values of sums, as the main part of the question will be over then.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

