
The value of \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\] is equal to
A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
B. \[{\left( {1 + {a^2} + {b^2}} \right)^2}\]
C. \[{\left( {1 - {a^2} + {b^2}} \right)^2}\]
D. \[{\left( {{a^2} - {b^2} - 1} \right)^3}\]
Answer
613.8k+ views
Hint: First of all, write the given determinant and take the common terms out by using simple row and column operations. Then expand the remaining determinant to obtain the required answer.
Complete step-by-step answer:
Given \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\]
By applying the operations \[{C_1} \to {C_1} - b{C_3},{C_2} \to {C_2} + a{C_3}\], we have
\[
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2} + 2{b^2}}&{2ab - 2ab}&{ - 2b} \\
{2ab - 2ab}&{1 - {a^2} + {b^2} + 2{a^2}}&{2a} \\
{2b - \left( {b - {a^2}b - {b^3}} \right)}&{ - 2a + a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b + {a^2}b + {b^3}}&{ - a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b\left( {1 + {a^2} + {b^2}} \right)}&{ - a\left( {1 + {a^2} + {b^2}} \right)}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Taking \[1 + {a^2} + {b^2}\] common in first and second column, we have
\[
= \left( {1 + {a^2} + {b^2}} \right)\left( {1 + {a^2} + {b^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
{\left( {1 + {a^2} + {b^2}} \right)^2}\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Expanding the determinant, we get
\[
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {\left( 1 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( { - a} \right)} \right\} - 0\left\{ {\left( 0 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( b \right)} \right\} + \left( { - 2b} \right)\left\{ {\left( 0 \right)\left( { - a} \right) - \left( 1 \right)\left( b \right)} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 - {a^2} - {b^2} + 2{a^2}} \right\} - 0 - 2b\left\{ { - b} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 + {a^2} - {b^2}} \right\} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} - {b^2} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} + {b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^3} \\
\]
Hence, \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right| = {\left( {1 + {a^2} + {b^2}} \right)^3}\]
Thus, the correct option is A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
Note: Since the determinants of a matrix and its transpose are equal, we can use column operations to simplify a determinant. By performing a column operation on the matrix has the same effect as performing the corresponding row operation on its transpose.
Complete step-by-step answer:
Given \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\]
By applying the operations \[{C_1} \to {C_1} - b{C_3},{C_2} \to {C_2} + a{C_3}\], we have
\[
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2} + 2{b^2}}&{2ab - 2ab}&{ - 2b} \\
{2ab - 2ab}&{1 - {a^2} + {b^2} + 2{a^2}}&{2a} \\
{2b - \left( {b - {a^2}b - {b^3}} \right)}&{ - 2a + a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b + {a^2}b + {b^3}}&{ - a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b\left( {1 + {a^2} + {b^2}} \right)}&{ - a\left( {1 + {a^2} + {b^2}} \right)}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Taking \[1 + {a^2} + {b^2}\] common in first and second column, we have
\[
= \left( {1 + {a^2} + {b^2}} \right)\left( {1 + {a^2} + {b^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
{\left( {1 + {a^2} + {b^2}} \right)^2}\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Expanding the determinant, we get
\[
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {\left( 1 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( { - a} \right)} \right\} - 0\left\{ {\left( 0 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( b \right)} \right\} + \left( { - 2b} \right)\left\{ {\left( 0 \right)\left( { - a} \right) - \left( 1 \right)\left( b \right)} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 - {a^2} - {b^2} + 2{a^2}} \right\} - 0 - 2b\left\{ { - b} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 + {a^2} - {b^2}} \right\} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} - {b^2} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} + {b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^3} \\
\]
Hence, \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right| = {\left( {1 + {a^2} + {b^2}} \right)^3}\]
Thus, the correct option is A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
Note: Since the determinants of a matrix and its transpose are equal, we can use column operations to simplify a determinant. By performing a column operation on the matrix has the same effect as performing the corresponding row operation on its transpose.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

