
The value of \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\] is equal to
A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
B. \[{\left( {1 + {a^2} + {b^2}} \right)^2}\]
C. \[{\left( {1 - {a^2} + {b^2}} \right)^2}\]
D. \[{\left( {{a^2} - {b^2} - 1} \right)^3}\]
Answer
597.3k+ views
Hint: First of all, write the given determinant and take the common terms out by using simple row and column operations. Then expand the remaining determinant to obtain the required answer.
Complete step-by-step answer:
Given \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\]
By applying the operations \[{C_1} \to {C_1} - b{C_3},{C_2} \to {C_2} + a{C_3}\], we have
\[
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2} + 2{b^2}}&{2ab - 2ab}&{ - 2b} \\
{2ab - 2ab}&{1 - {a^2} + {b^2} + 2{a^2}}&{2a} \\
{2b - \left( {b - {a^2}b - {b^3}} \right)}&{ - 2a + a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b + {a^2}b + {b^3}}&{ - a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b\left( {1 + {a^2} + {b^2}} \right)}&{ - a\left( {1 + {a^2} + {b^2}} \right)}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Taking \[1 + {a^2} + {b^2}\] common in first and second column, we have
\[
= \left( {1 + {a^2} + {b^2}} \right)\left( {1 + {a^2} + {b^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
{\left( {1 + {a^2} + {b^2}} \right)^2}\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Expanding the determinant, we get
\[
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {\left( 1 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( { - a} \right)} \right\} - 0\left\{ {\left( 0 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( b \right)} \right\} + \left( { - 2b} \right)\left\{ {\left( 0 \right)\left( { - a} \right) - \left( 1 \right)\left( b \right)} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 - {a^2} - {b^2} + 2{a^2}} \right\} - 0 - 2b\left\{ { - b} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 + {a^2} - {b^2}} \right\} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} - {b^2} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} + {b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^3} \\
\]
Hence, \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right| = {\left( {1 + {a^2} + {b^2}} \right)^3}\]
Thus, the correct option is A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
Note: Since the determinants of a matrix and its transpose are equal, we can use column operations to simplify a determinant. By performing a column operation on the matrix has the same effect as performing the corresponding row operation on its transpose.
Complete step-by-step answer:
Given \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\]
By applying the operations \[{C_1} \to {C_1} - b{C_3},{C_2} \to {C_2} + a{C_3}\], we have
\[
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2} + 2{b^2}}&{2ab - 2ab}&{ - 2b} \\
{2ab - 2ab}&{1 - {a^2} + {b^2} + 2{a^2}}&{2a} \\
{2b - \left( {b - {a^2}b - {b^3}} \right)}&{ - 2a + a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b + {a^2}b + {b^3}}&{ - a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b\left( {1 + {a^2} + {b^2}} \right)}&{ - a\left( {1 + {a^2} + {b^2}} \right)}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Taking \[1 + {a^2} + {b^2}\] common in first and second column, we have
\[
= \left( {1 + {a^2} + {b^2}} \right)\left( {1 + {a^2} + {b^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
{\left( {1 + {a^2} + {b^2}} \right)^2}\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Expanding the determinant, we get
\[
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {\left( 1 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( { - a} \right)} \right\} - 0\left\{ {\left( 0 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( b \right)} \right\} + \left( { - 2b} \right)\left\{ {\left( 0 \right)\left( { - a} \right) - \left( 1 \right)\left( b \right)} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 - {a^2} - {b^2} + 2{a^2}} \right\} - 0 - 2b\left\{ { - b} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 + {a^2} - {b^2}} \right\} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} - {b^2} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} + {b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^3} \\
\]
Hence, \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right| = {\left( {1 + {a^2} + {b^2}} \right)^3}\]
Thus, the correct option is A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
Note: Since the determinants of a matrix and its transpose are equal, we can use column operations to simplify a determinant. By performing a column operation on the matrix has the same effect as performing the corresponding row operation on its transpose.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

