
The value of \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\] is equal to
A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
B. \[{\left( {1 + {a^2} + {b^2}} \right)^2}\]
C. \[{\left( {1 - {a^2} + {b^2}} \right)^2}\]
D. \[{\left( {{a^2} - {b^2} - 1} \right)^3}\]
Answer
516.3k+ views
Hint: First of all, write the given determinant and take the common terms out by using simple row and column operations. Then expand the remaining determinant to obtain the required answer.
Complete step-by-step answer:
Given \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\]
By applying the operations \[{C_1} \to {C_1} - b{C_3},{C_2} \to {C_2} + a{C_3}\], we have
\[
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2} + 2{b^2}}&{2ab - 2ab}&{ - 2b} \\
{2ab - 2ab}&{1 - {a^2} + {b^2} + 2{a^2}}&{2a} \\
{2b - \left( {b - {a^2}b - {b^3}} \right)}&{ - 2a + a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b + {a^2}b + {b^3}}&{ - a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b\left( {1 + {a^2} + {b^2}} \right)}&{ - a\left( {1 + {a^2} + {b^2}} \right)}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Taking \[1 + {a^2} + {b^2}\] common in first and second column, we have
\[
= \left( {1 + {a^2} + {b^2}} \right)\left( {1 + {a^2} + {b^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
{\left( {1 + {a^2} + {b^2}} \right)^2}\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Expanding the determinant, we get
\[
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {\left( 1 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( { - a} \right)} \right\} - 0\left\{ {\left( 0 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( b \right)} \right\} + \left( { - 2b} \right)\left\{ {\left( 0 \right)\left( { - a} \right) - \left( 1 \right)\left( b \right)} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 - {a^2} - {b^2} + 2{a^2}} \right\} - 0 - 2b\left\{ { - b} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 + {a^2} - {b^2}} \right\} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} - {b^2} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} + {b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^3} \\
\]
Hence, \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right| = {\left( {1 + {a^2} + {b^2}} \right)^3}\]
Thus, the correct option is A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
Note: Since the determinants of a matrix and its transpose are equal, we can use column operations to simplify a determinant. By performing a column operation on the matrix has the same effect as performing the corresponding row operation on its transpose.
Complete step-by-step answer:
Given \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right|\]
By applying the operations \[{C_1} \to {C_1} - b{C_3},{C_2} \to {C_2} + a{C_3}\], we have
\[
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2} + 2{b^2}}&{2ab - 2ab}&{ - 2b} \\
{2ab - 2ab}&{1 - {a^2} + {b^2} + 2{a^2}}&{2a} \\
{2b - \left( {b - {a^2}b - {b^3}} \right)}&{ - 2a + a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b + {a^2}b + {b^3}}&{ - a - {a^3} - a{b^2}}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
= \left| {\begin{array}{*{20}{c}}
{1 + {a^2} + {b^2}}&0&{ - 2b} \\
0&{1 + {a^2} + {b^2}}&{2a} \\
{b\left( {1 + {a^2} + {b^2}} \right)}&{ - a\left( {1 + {a^2} + {b^2}} \right)}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Taking \[1 + {a^2} + {b^2}\] common in first and second column, we have
\[
= \left( {1 + {a^2} + {b^2}} \right)\left( {1 + {a^2} + {b^2}} \right)\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
{\left( {1 + {a^2} + {b^2}} \right)^2}\left| {\begin{array}{*{20}{c}}
1&0&{ - 2b} \\
0&1&{2a} \\
b&{ - a}&{1 - {a^2} - {b^2}}
\end{array}} \right| \\
\]
Expanding the determinant, we get
\[
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {\left( 1 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( { - a} \right)} \right\} - 0\left\{ {\left( 0 \right)\left( {1 - {a^2} - {b^2}} \right) - \left( {2a} \right)\left( b \right)} \right\} + \left( { - 2b} \right)\left\{ {\left( 0 \right)\left( { - a} \right) - \left( 1 \right)\left( b \right)} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 - {a^2} - {b^2} + 2{a^2}} \right\} - 0 - 2b\left\{ { - b} \right\}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1\left\{ {1 + {a^2} - {b^2}} \right\} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} - {b^2} + 2{b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^2}\left[ {1 + {a^2} + {b^2}} \right] \\
= {\left( {1 + {a^2} + {b^2}} \right)^3} \\
\]
Hence, \[\left| {\begin{array}{*{20}{c}}
{1 + {a^2} - {b^2}}&{2ab}&{ - 2b} \\
{2ab}&{1 - {a^2} + {b^2}}&{2a} \\
{2b}&{ - 2a}&{1 - {a^2} - {b^2}}
\end{array}} \right| = {\left( {1 + {a^2} + {b^2}} \right)^3}\]
Thus, the correct option is A. \[{\left( {1 + {a^2} + {b^2}} \right)^3}\]
Note: Since the determinants of a matrix and its transpose are equal, we can use column operations to simplify a determinant. By performing a column operation on the matrix has the same effect as performing the corresponding row operation on its transpose.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
