
The value of $Kw$ is $9.55 \times {10^{ - 14}}$ at a certain temperature. Calculate the pH of water at this temperature.
Answer
483.3k+ views
Hint: $Kw$ is called the coefficient of water that can be calculated using the concentration of ${H^ + }$ and $O{H^ - }$ present in the solution. For water, ${H^ + }$= $O{H^ - }$ . Using this relation we can find the answer to this question.
Formula used :Kw is the equilibrium constant.
$Kw = \left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]$
$pH = - \log \left[ {{H^ + }} \right]$
Kw is the equilibrium constant. Where $\left[ {{H^ + }} \right]$ and $\left[ {O{H^ - }} \right]$ is the concentration of hydrogen ions and hydroxide ions respectively.
Complete step by step answer:
The above coefficient $Kw$ is called the autoionization constant of water. It has a magnitude of the order of ${10^{ - 14}}$ which is derived from the pH and pOH of the solution. For
For this question we know the value of $Kw$ and by plugging it in the formula mentioned above we get the following set of equation:
$Kw = \left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]$
Since, we know the relation given below we get,
$\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]$
$Kw = \left[ {{H^ + }} \right]\left[ {{H^ + }} \right]$
$Kw = {\left[ {{H^ + }} \right]^2}$
substituting the value of ionization constant of water, we get,
$9.55 \times {10^{ - 14}} = {\left[ {{H^ + }} \right]^2}$
$\sqrt {9.55 \times {{10}^{ - 14}}} = \left[ {{H^ + }} \right]$
therefore, the concentration of hydrogen ion is,
$3.09 \times {10^{ - 7}} = \left[ {{H^ + }} \right]$
Now that we have found the concentration of the ${H^ + }$ in the solution. we can find the pH.
$pH = - \log \left[ {{H^ + }} \right]$
$ = - \log \left[ {3.09 \times {{10}^{ - 7}}} \right]$
solving the logarithm we get,
$ = - \left[ {\log \left( {3.09} \right) + \log \left( {{{10}^{ - 7}}} \right)} \right]$
$ = - \left[ {0.49 - 7} \right]$
$ = - \left[ { - 6.55} \right]$
$pH = 6.55$
Thus, we have found the pH of the solution at that particular temperature that is,$6.55$ . This shows that water is slightly acidic.
Note: $Kw$ :It is temperature dependent. Meaning its value changes with temperature. P $Kw$ can also be found using the pH and pOH using the formula below:
$pKw = pH + pOH$
Since the pH and pOH of any aqueous solution at $298K$ is $7$ if the molar concentration of both ions is the same. Therefore, the $pKw$ is $14$ for any solution at $298K$ .
It is also important to remember that the pH can change with temperature.
The contribution of p $Kw$ is extremely significant in cases when the solution is extremely dilute and can influence the ionization of the solution.
$Kw$ is also known as the ionic product of water. $Kw$ increases with increase in temperature.
Remember that for pure water, we have to consider the ${H^ + }$ and $O{H^ - }$ to be equal.
Formula used :Kw is the equilibrium constant.
$Kw = \left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]$
$pH = - \log \left[ {{H^ + }} \right]$
Kw is the equilibrium constant. Where $\left[ {{H^ + }} \right]$ and $\left[ {O{H^ - }} \right]$ is the concentration of hydrogen ions and hydroxide ions respectively.
Complete step by step answer:
The above coefficient $Kw$ is called the autoionization constant of water. It has a magnitude of the order of ${10^{ - 14}}$ which is derived from the pH and pOH of the solution. For
For this question we know the value of $Kw$ and by plugging it in the formula mentioned above we get the following set of equation:
$Kw = \left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]$
Since, we know the relation given below we get,
$\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]$
$Kw = \left[ {{H^ + }} \right]\left[ {{H^ + }} \right]$
$Kw = {\left[ {{H^ + }} \right]^2}$
substituting the value of ionization constant of water, we get,
$9.55 \times {10^{ - 14}} = {\left[ {{H^ + }} \right]^2}$
$\sqrt {9.55 \times {{10}^{ - 14}}} = \left[ {{H^ + }} \right]$
therefore, the concentration of hydrogen ion is,
$3.09 \times {10^{ - 7}} = \left[ {{H^ + }} \right]$
Now that we have found the concentration of the ${H^ + }$ in the solution. we can find the pH.
$pH = - \log \left[ {{H^ + }} \right]$
$ = - \log \left[ {3.09 \times {{10}^{ - 7}}} \right]$
solving the logarithm we get,
$ = - \left[ {\log \left( {3.09} \right) + \log \left( {{{10}^{ - 7}}} \right)} \right]$
$ = - \left[ {0.49 - 7} \right]$
$ = - \left[ { - 6.55} \right]$
$pH = 6.55$
Thus, we have found the pH of the solution at that particular temperature that is,$6.55$ . This shows that water is slightly acidic.
Note: $Kw$ :It is temperature dependent. Meaning its value changes with temperature. P $Kw$ can also be found using the pH and pOH using the formula below:
$pKw = pH + pOH$
Since the pH and pOH of any aqueous solution at $298K$ is $7$ if the molar concentration of both ions is the same. Therefore, the $pKw$ is $14$ for any solution at $298K$ .
It is also important to remember that the pH can change with temperature.
The contribution of p $Kw$ is extremely significant in cases when the solution is extremely dilute and can influence the ionization of the solution.
$Kw$ is also known as the ionic product of water. $Kw$ increases with increase in temperature.
Remember that for pure water, we have to consider the ${H^ + }$ and $O{H^ - }$ to be equal.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
