
The value of \[\int\limits_{0}^{2x}{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\] where [t] denotes the greatest integer function, is:
\[\left( a \right)-2\pi \]
\[\left( b \right)\pi \]
\[\left( c \right)-\pi \]
\[\left( d \right)2\pi \]
Answer
576.3k+ views
Hint: We have to find the integral of \[\left[ \sin 2x\left( 1+\cos 3x \right) \right]\] and we will start by splitting the limit \[\left[ 0,2\pi \right]\] as \[\left[ 0,\pi \right]\] and \[\left[ \pi ,2\pi \right].\] Then we will name the integral \[\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\] as \[{{I}_{1}}\] and \[{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}.\] Then we will simplify \[{{I}_{2}}\] and we get \[{{I}_{2}}\] as \[\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\] and then we use [x] + [– x] = – 1 to simplify and get the integral to get the solution.
Complete step-by-step answer:
We are asked to find the integral of \[\left[ \sin 2x\left( 1+\cos 3x \right) \right]\] on the interval from 0 to \[2\pi .\] We will firstly split our interval \[\left[ 0,2\pi \right]\] as \[\left[ 0,\pi \right]\] and \[\left[ \pi ,2\pi \right].\] So,
\[I=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\]
Becomes
\[I=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{\pi }^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\]
Now, let \[{{I}_{1}}=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\] and \[{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}.\]
So, we have
\[I={{I}_{1}}+{{I}_{2}}\]
First, we will simplify \[{{I}_{2}}.\]
We have,
\[{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\]
To solve this integral, we will substitute x as \[2\pi -t.\]
\[\Rightarrow x=2\pi -t\]
Now, dx will become
\[\Rightarrow dx=0-dt\]
\[\Rightarrow dx=-dt\]
Now our earlier limit was \[x=\pi \] to \[x=2\pi .\] Now, they change in t as,
\[t=2\pi -x\]
This means, \[x=\pi \] becomes \[t=\pi .\]
While, \[x=2\pi \] becomes t = 0. Hence, our integral becomes
\[{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\]
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin 2\left( 2\pi -t \right)\left( 1+\cos 3\left( 2\pi -t \right) \right) \right]dt}\]
Simplifying, we get,
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin \left( 4\pi -2t \right)\left( 1+\cos \left( 6\pi -3t \right) \right) \right]dt}\]
Now as we know that \[\sin \left( 2\pi -\theta \right)=\sin \left( -\theta \right)\] and \[\cos \left( 2n\pi -\theta \right)=\cos \left( \theta \right).\] So, we get,
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin \left( -2t \right)\left( 1+\cos \left( 3t \right) \right) \right]dt}\]
Now, sin (– x) = – sin x. So,
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ -\sin \left( 2t \right)\left( 1+\cos \left( 3t \right) \right) \right]dt}\]
Now changing t as x, we get,
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\]
We know that, \[-\int\limits_{a}^{b}{dx}=\int\limits_{b}^{a}{dx}.\] So, we get,
\[\Rightarrow {{I}_{2}}=\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\]
Now, putting this back in the value of I, we get,
\[I={{I}_{1}}+{{I}_{2}}\]
\[I=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\]
Now, we know that,
\[\left[ x \right]+\left[ -x \right]=-1\text{ }\forall x\notin I\]
We will take, \[x=\sin 2x\left( 1+\cos 3x \right),\] we get,
\[I=\int\limits_{0}^{\pi }{\left[ x \right]dx}+\int\limits_{0}^{\pi }{\left[ -x \right]dx}\]
\[I=\int\limits_{0}^{\pi }{\left( \left[ x \right]+\left[ -x \right] \right)dx}\]
So, using \[\left[ x \right]+\left[ -x \right]=-1,\] we get,
\[I=\int\limits_{0}^{\pi }{\left( -1 \right)dx}\]
\[I=\left( -x \right)_{0}^{\pi }\]
Putting the limit, we get,
\[I=-\pi -\left( -0 \right)\]
\[I=-\pi \]
So, the correct answer is “Option c”.
Note: Remember for \[x=2\pi -t,\] we get \[dx=-dt\] as we differentiate both the sides, we get,
\[dx=d\left( 2\pi -t \right)\]
As derivative of the constant is 0.
\[\Rightarrow dx=d\left( 2\pi \right)-dt\]
So,
\[dx=-dt\]
Also, when the limit is the same, we can add integral that is why we add \[{{I}_{1}}\] and \[{{I}_{2}}.\]
\[I=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\]
As the limit is the same, so it can be added up.
Complete step-by-step answer:
We are asked to find the integral of \[\left[ \sin 2x\left( 1+\cos 3x \right) \right]\] on the interval from 0 to \[2\pi .\] We will firstly split our interval \[\left[ 0,2\pi \right]\] as \[\left[ 0,\pi \right]\] and \[\left[ \pi ,2\pi \right].\] So,
\[I=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\]
Becomes
\[I=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{\pi }^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\]
Now, let \[{{I}_{1}}=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\] and \[{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}.\]
So, we have
\[I={{I}_{1}}+{{I}_{2}}\]
First, we will simplify \[{{I}_{2}}.\]
We have,
\[{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\]
To solve this integral, we will substitute x as \[2\pi -t.\]
\[\Rightarrow x=2\pi -t\]
Now, dx will become
\[\Rightarrow dx=0-dt\]
\[\Rightarrow dx=-dt\]
Now our earlier limit was \[x=\pi \] to \[x=2\pi .\] Now, they change in t as,
\[t=2\pi -x\]
This means, \[x=\pi \] becomes \[t=\pi .\]
While, \[x=2\pi \] becomes t = 0. Hence, our integral becomes
\[{{I}_{2}}=\int\limits_{0}^{2\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}\]
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin 2\left( 2\pi -t \right)\left( 1+\cos 3\left( 2\pi -t \right) \right) \right]dt}\]
Simplifying, we get,
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin \left( 4\pi -2t \right)\left( 1+\cos \left( 6\pi -3t \right) \right) \right]dt}\]
Now as we know that \[\sin \left( 2\pi -\theta \right)=\sin \left( -\theta \right)\] and \[\cos \left( 2n\pi -\theta \right)=\cos \left( \theta \right).\] So, we get,
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ \sin \left( -2t \right)\left( 1+\cos \left( 3t \right) \right) \right]dt}\]
Now, sin (– x) = – sin x. So,
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ -\sin \left( 2t \right)\left( 1+\cos \left( 3t \right) \right) \right]dt}\]
Now changing t as x, we get,
\[\Rightarrow {{I}_{2}}=-\int\limits_{\pi }^{0}{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\]
We know that, \[-\int\limits_{a}^{b}{dx}=\int\limits_{b}^{a}{dx}.\] So, we get,
\[\Rightarrow {{I}_{2}}=\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\]
Now, putting this back in the value of I, we get,
\[I={{I}_{1}}+{{I}_{2}}\]
\[I=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\]
Now, we know that,
\[\left[ x \right]+\left[ -x \right]=-1\text{ }\forall x\notin I\]
We will take, \[x=\sin 2x\left( 1+\cos 3x \right),\] we get,
\[I=\int\limits_{0}^{\pi }{\left[ x \right]dx}+\int\limits_{0}^{\pi }{\left[ -x \right]dx}\]
\[I=\int\limits_{0}^{\pi }{\left( \left[ x \right]+\left[ -x \right] \right)dx}\]
So, using \[\left[ x \right]+\left[ -x \right]=-1,\] we get,
\[I=\int\limits_{0}^{\pi }{\left( -1 \right)dx}\]
\[I=\left( -x \right)_{0}^{\pi }\]
Putting the limit, we get,
\[I=-\pi -\left( -0 \right)\]
\[I=-\pi \]
So, the correct answer is “Option c”.
Note: Remember for \[x=2\pi -t,\] we get \[dx=-dt\] as we differentiate both the sides, we get,
\[dx=d\left( 2\pi -t \right)\]
As derivative of the constant is 0.
\[\Rightarrow dx=d\left( 2\pi \right)-dt\]
So,
\[dx=-dt\]
Also, when the limit is the same, we can add integral that is why we add \[{{I}_{1}}\] and \[{{I}_{2}}.\]
\[I=\int\limits_{0}^{\pi }{\left[ \sin 2x\left( 1+\cos 3x \right) \right]dx}+\int\limits_{0}^{\pi }{\left[ -\sin 2x\left( 1+\cos 3x \right) \right]dx}\]
As the limit is the same, so it can be added up.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

