The value of $\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx$ is
A. 1
B. 0
C. -1
D. $\dfrac{\pi }{4}$
Answer
326.4k+ views
Hint: Approach with one of the properties of definite integrals,
$\int\limits_{a}^{b}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}}$. Then use the identity \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\], to get the required result.
Complete step-by-step answer:
We are given the following expressions,
$\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx$…… (1)
Let the equation (1) be considered to be I.
Then it can be written as,
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx........(2)$
To solve and get the value of ‘I’ we have to use the following identity,
$\int\limits_{a}^{b}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}}$
So by using the identity we have to replace x by (1+0-x)=(1-x) in the expression of I.
Thus we get,
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2-2x-1}{1+(1-x)-{{(1-x)}^{2}}} \right)}dx$
So, now doing the calculations carefully we get,
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{1-2x}{2-x-1+2x-{{x}^{2}}} \right)}dx$
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{1-2x}{1+x-{{x}^{2}}} \right)}dx$
Now taking out the minus sign, we get
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( -\dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx$
Now to simplify it more we will use the identity,
\[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\]
So now using the above identity, the integral ‘I’ can be written as,
$I=-\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx$
Substituting the value from equation (2), we get
I=-I
Now bringing ‘I’ on one side, which becomes,
2I=0
So, I=0
Therefore, the value of $\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx=0.$
Hence, the correct answer is option B.
Note: In this type of question, students should be careful while using the identities and in the calculation part. Another approach is to first calculate the integration using integrate by parts method, and then applying the limits. You will get the same answer but that is a very lengthy and tedious process.
$\int\limits_{a}^{b}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}}$. Then use the identity \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\], to get the required result.
Complete step-by-step answer:
We are given the following expressions,
$\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx$…… (1)
Let the equation (1) be considered to be I.
Then it can be written as,
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx........(2)$
To solve and get the value of ‘I’ we have to use the following identity,
$\int\limits_{a}^{b}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}}$
So by using the identity we have to replace x by (1+0-x)=(1-x) in the expression of I.
Thus we get,
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2-2x-1}{1+(1-x)-{{(1-x)}^{2}}} \right)}dx$
So, now doing the calculations carefully we get,
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{1-2x}{2-x-1+2x-{{x}^{2}}} \right)}dx$
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{1-2x}{1+x-{{x}^{2}}} \right)}dx$
Now taking out the minus sign, we get
$I=\int\limits_{0}^{1}{{{\tan }^{-1}}\left( -\dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx$
Now to simplify it more we will use the identity,
\[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\]
So now using the above identity, the integral ‘I’ can be written as,
$I=-\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx$
Substituting the value from equation (2), we get
I=-I
Now bringing ‘I’ on one side, which becomes,
2I=0
So, I=0
Therefore, the value of $\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)}dx=0.$
Hence, the correct answer is option B.
Note: In this type of question, students should be careful while using the identities and in the calculation part. Another approach is to first calculate the integration using integrate by parts method, and then applying the limits. You will get the same answer but that is a very lengthy and tedious process.
Last updated date: 28th May 2023
•
Total views: 326.4k
•
Views today: 4.84k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
