
The value of integral, $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}$
( a ) $\dfrac{\pi }{2}(\sqrt{2}+1)$
( b ) $\pi (\sqrt{2}-1)$
( c ) $2\pi (\sqrt{2}-1)$
( d ) $\pi \sqrt{2}$
Answer
509.4k+ views
Hint: To solve this question, we will use property of definite integration such as \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] and \[\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}\]. Also, we will use some trigonometric properties and trigonometric values to solve this question also some algebraic identity such as $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$. Hence, using these we can solve the integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}$
Complete step by step answer:
To solve such a question, we must know some properties of definite integration and indefinite integration..
One of the most important property of definite integration is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit.
Another important property of definite integral is \[\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}\].
Also, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n}+C}$ , where C is constant which does not appear I definite integral but does appear in indefinite integral.
Now, we have to evaluate $I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}$………( i ),
So, using property \[\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}\]. We get
a = $\dfrac{\pi }{4}$ and b = $\dfrac{3\pi }{4}$
so, \[a\text{ }+\text{ }b\text{ }\text{ }-x\text{ }=\text{ }\dfrac{\pi }{4}+\dfrac{3\pi }{4}-x\]
\[a\text{ }+\text{ }b\text{ }\text{ }-x\text{ }=\text{ }\pi -x\]
So, $I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi -x}{1+\sin (\pi -x)}\cdot dx}$
We know that $\sin (\pi -\theta )=\sin \theta $ ,
So, $I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi -x}{1+\sin x}\cdot dx}$
$I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}-\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}$……. ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}-\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}+\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}$
On solving we get
$2I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}$
Multiplying numerator and denominator by $1-\sin x$, we get
$2I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\times \dfrac{1-\sin x}{1-\sin x}\cdot dx}$
$I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{(1+\sin x)(1-\sin x)}dx}$
Using, algebraic identity, $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$ ,we get
$I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{(1-{{\sin }^{2}}x)}dx}$
We know that, $1-{{\sin }^{2}}x={{\cos }^{2}}x$ ,
So, $I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{{{\cos }^{2}}x}dx}$
Or, $I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\sin x}{{{\cos }^{2}}x}dx}$
Now, as $\cos x=\dfrac{1}{\sec x}$ , $\tan x=\dfrac{\sin x}{cosx}$
So, $I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{{{\sec }^{2}}xdx}-\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\tan x\sec xdx}$
Now, we know that, $\int{{{\sec }^{2}}x\cdot dx=\operatorname{tanx}}$ and \[\int{\sec x\tan x\cdot dx=\sec x}\],
So, $I=\dfrac{\pi }{2}{{\left[ \tan x-\sec x \right]}_{\dfrac{\pi }{4}}}^{\dfrac{3\pi }{4}}$
Putting values of upper limit and lower limit, we get
$I=\dfrac{\pi }{2}\left[ \left( \tan \dfrac{3\pi }{4}-\sec \dfrac{3\pi }{4} \right)-\left( \tan \dfrac{\pi }{4}-\sec \dfrac{\pi }{4} \right) \right]$
As, $\tan \dfrac{\pi }{4}=1,\sec \dfrac{\pi }{4}=\sqrt{2}$
$I=\dfrac{\pi }{2}\left[ \left( \tan \left( \pi -\dfrac{\pi }{4} \right)-\sec \left( \pi -\dfrac{\pi }{4} \right) \right)-\left( 1-\sqrt{2} \right) \right]$
As, $\tan \left( \pi -\dfrac{\pi }{4} \right)=-1$and $\sec \left( \pi -\dfrac{\pi }{4} \right)=-\sqrt{2}$
So,$I=\dfrac{\pi }{2}\left[ \left( -1+\sqrt{2} \right)-\left( 1-\sqrt{2} \right) \right]$
On solving, we get
$I=\dfrac{\pi }{2}\cdot 2(\sqrt{2}-1)$
$I=\pi (\sqrt{2}-1)$
So, the correct answer is “Option b”.
Note: While integrating the definite integral always use the correct formula to evaluate the integration and always try to skip calculation error as it may change the answer of the solution or may make the solution more complex. One must know all the properties and formula of indefinite and definite integrals.
Complete step by step answer:
To solve such a question, we must know some properties of definite integration and indefinite integration..
One of the most important property of definite integration is \[\int\limits_{a}^{b}{f(x)dx=F(a)-F(b)}\] ,where F is the integration of f ( x ) and a is lower limit and b is upper limit.
Another important property of definite integral is \[\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}\].
Also, $\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n}+C}$ , where C is constant which does not appear I definite integral but does appear in indefinite integral.
Now, we have to evaluate $I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}$………( i ),
So, using property \[\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}\]. We get
a = $\dfrac{\pi }{4}$ and b = $\dfrac{3\pi }{4}$
so, \[a\text{ }+\text{ }b\text{ }\text{ }-x\text{ }=\text{ }\dfrac{\pi }{4}+\dfrac{3\pi }{4}-x\]
\[a\text{ }+\text{ }b\text{ }\text{ }-x\text{ }=\text{ }\pi -x\]
So, $I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi -x}{1+\sin (\pi -x)}\cdot dx}$
We know that $\sin (\pi -\theta )=\sin \theta $ ,
So, $I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi -x}{1+\sin x}\cdot dx}$
$I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}-\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}$……. ( ii )
Adding ( i ) and ( ii ), we get
$I+I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}-\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}+\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{x}{1+\sin x}\cdot dx}$
On solving we get
$2I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\cdot dx}$
Multiplying numerator and denominator by $1-\sin x$, we get
$2I=\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\pi }{1+\sin x}\times \dfrac{1-\sin x}{1-\sin x}\cdot dx}$
$I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{(1+\sin x)(1-\sin x)}dx}$
Using, algebraic identity, $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$ ,we get
$I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{(1-{{\sin }^{2}}x)}dx}$
We know that, $1-{{\sin }^{2}}x={{\cos }^{2}}x$ ,
So, $I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1-\sin x}{{{\cos }^{2}}x}dx}$
Or, $I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{1}{{{\cos }^{2}}x}dx}-\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\dfrac{\sin x}{{{\cos }^{2}}x}dx}$
Now, as $\cos x=\dfrac{1}{\sec x}$ , $\tan x=\dfrac{\sin x}{cosx}$
So, $I=\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{{{\sec }^{2}}xdx}-\dfrac{\pi }{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{3\pi }{4}}{\tan x\sec xdx}$
Now, we know that, $\int{{{\sec }^{2}}x\cdot dx=\operatorname{tanx}}$ and \[\int{\sec x\tan x\cdot dx=\sec x}\],
So, $I=\dfrac{\pi }{2}{{\left[ \tan x-\sec x \right]}_{\dfrac{\pi }{4}}}^{\dfrac{3\pi }{4}}$
Putting values of upper limit and lower limit, we get
$I=\dfrac{\pi }{2}\left[ \left( \tan \dfrac{3\pi }{4}-\sec \dfrac{3\pi }{4} \right)-\left( \tan \dfrac{\pi }{4}-\sec \dfrac{\pi }{4} \right) \right]$
As, $\tan \dfrac{\pi }{4}=1,\sec \dfrac{\pi }{4}=\sqrt{2}$
$I=\dfrac{\pi }{2}\left[ \left( \tan \left( \pi -\dfrac{\pi }{4} \right)-\sec \left( \pi -\dfrac{\pi }{4} \right) \right)-\left( 1-\sqrt{2} \right) \right]$
As, $\tan \left( \pi -\dfrac{\pi }{4} \right)=-1$and $\sec \left( \pi -\dfrac{\pi }{4} \right)=-\sqrt{2}$
So,$I=\dfrac{\pi }{2}\left[ \left( -1+\sqrt{2} \right)-\left( 1-\sqrt{2} \right) \right]$
On solving, we get
$I=\dfrac{\pi }{2}\cdot 2(\sqrt{2}-1)$
$I=\pi (\sqrt{2}-1)$
So, the correct answer is “Option b”.
Note: While integrating the definite integral always use the correct formula to evaluate the integration and always try to skip calculation error as it may change the answer of the solution or may make the solution more complex. One must know all the properties and formula of indefinite and definite integrals.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
