
The value of integral $\int\limits_4^0 {\dfrac{{[{x^2}]dx}}{{[{x^2} - 28x + 196] + [{x^2}]}},where\,[x]} $ denotes the greatest integer less than or equal to x, is :
A) $1/3$
B) $6$
C) $7$
D) $3$
Answer
591.9k+ views
Hint:Use the property of integral $\int\limits_a^b {f(x)} dx = \int\limits_a^b {f(a + b - x)dx} $ to obtain a new integral. Then add the two integrals and get the value for the original integral.
Complete step-by-step answer:
Let us assume that
$I = \int\limits_4^{10} {\dfrac{{[{x^2}]dx}}{{[{x^2} - 28x + 196] + [{x^2}]}}} $
If you carefully observe , you will realize that ${x^2} - 28x + 196 = {(x - 14)^2}$ as ${(a - b)^2} = {a^2} - 2ab + {b^2}$
$ = > I = \int\limits_4^{10} {\dfrac{{[{x^2}]}}{{{{[(x - 14)]}^2} + [{x^2}]}}} ..................(1)$
Now we will use the property
$\int\limits_a^b {f(x)} dx = \int\limits_a^b {f(a + b - x)dx} $
Hence we have to replace $x \,as\, (a + b - x)$ that is in this case $x \,as\, > (14 - x)$
$I = \int\limits_4^{10}
\dfrac{{[14 - {x^2}]}}{{[{{(14 - x - 14)}^2}] + [{{(14 - x)}^2}]}} \\
\\ \\
= > \int\limits_4^{10} {\dfrac{{{{[14 - x]}^2}}}{{{{[x]}^2} + {{[(14 - x)]}^2}}}.........................(2)} \\ $
Adding both the equation we get
$ I + I = \int\limits_4^{10} {\dfrac{{[{x^2}]dx}}{{[{x^2}] + {{[x - 14]}^2}}} + \int\limits_4^{10} {\dfrac{{{{[14 - x]}^2}dx}}{{{{[14 - x]}^2} + [{x^2}]}}} } \\
\text{since},{(a - b)^2} = {(b - a)^2} \\
{(x - 14)^2} = {(14 - x)^2} \\
2I = \int\limits_4^{10} {\dfrac{{[{x^2}]dx}}{{[{x^2}] + {{[x - 14]}^2}}} + \int\limits_4^{10} {\dfrac{{{{[x - 14]}^2}dx}}{{{{[x - 14]}^2} + [{x^2}]}}} } \\
2I = \int\limits_4^{10} {\dfrac{{[{x^2}] + {{[(x - 14)]}^2}}}{{[{x^2}] + {{[x - 14]}^2}}}dx} \\
2I = \int\limits_4^{10} {dx} \\
2I = |x|_4^{10} \\
2I = 10 - 4 = 6 \\
I = 3 \\ $
Hence the value of integral is 3
So, the correct answer is “Option D”.
Note:The property we used in the question is quite important. This is because without using this property, this question is too difficult to solve. Hence, we need to take care of this property whenever we ask such questions. It is generally used in questions where the denominator has 2 or more terms in addition and the numerator has a term common with the denominator such as we used in the above question.
Complete step-by-step answer:
Let us assume that
$I = \int\limits_4^{10} {\dfrac{{[{x^2}]dx}}{{[{x^2} - 28x + 196] + [{x^2}]}}} $
If you carefully observe , you will realize that ${x^2} - 28x + 196 = {(x - 14)^2}$ as ${(a - b)^2} = {a^2} - 2ab + {b^2}$
$ = > I = \int\limits_4^{10} {\dfrac{{[{x^2}]}}{{{{[(x - 14)]}^2} + [{x^2}]}}} ..................(1)$
Now we will use the property
$\int\limits_a^b {f(x)} dx = \int\limits_a^b {f(a + b - x)dx} $
Hence we have to replace $x \,as\, (a + b - x)$ that is in this case $x \,as\, > (14 - x)$
$I = \int\limits_4^{10}
\dfrac{{[14 - {x^2}]}}{{[{{(14 - x - 14)}^2}] + [{{(14 - x)}^2}]}} \\
\\ \\
= > \int\limits_4^{10} {\dfrac{{{{[14 - x]}^2}}}{{{{[x]}^2} + {{[(14 - x)]}^2}}}.........................(2)} \\ $
Adding both the equation we get
$ I + I = \int\limits_4^{10} {\dfrac{{[{x^2}]dx}}{{[{x^2}] + {{[x - 14]}^2}}} + \int\limits_4^{10} {\dfrac{{{{[14 - x]}^2}dx}}{{{{[14 - x]}^2} + [{x^2}]}}} } \\
\text{since},{(a - b)^2} = {(b - a)^2} \\
{(x - 14)^2} = {(14 - x)^2} \\
2I = \int\limits_4^{10} {\dfrac{{[{x^2}]dx}}{{[{x^2}] + {{[x - 14]}^2}}} + \int\limits_4^{10} {\dfrac{{{{[x - 14]}^2}dx}}{{{{[x - 14]}^2} + [{x^2}]}}} } \\
2I = \int\limits_4^{10} {\dfrac{{[{x^2}] + {{[(x - 14)]}^2}}}{{[{x^2}] + {{[x - 14]}^2}}}dx} \\
2I = \int\limits_4^{10} {dx} \\
2I = |x|_4^{10} \\
2I = 10 - 4 = 6 \\
I = 3 \\ $
Hence the value of integral is 3
So, the correct answer is “Option D”.
Note:The property we used in the question is quite important. This is because without using this property, this question is too difficult to solve. Hence, we need to take care of this property whenever we ask such questions. It is generally used in questions where the denominator has 2 or more terms in addition and the numerator has a term common with the denominator such as we used in the above question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

