
The value of integral \[\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\] is equal to
\[\begin{align}
& A.\left( x-1 \right){{e}^{x+\dfrac{1}{x}}}+c \\
& B.x{{e}^{x+\dfrac{1}{x}}}+c \\
& C.\left( x+1 \right){{e}^{x+\dfrac{1}{x}}}+c \\
& D.-x{{e}^{x+\dfrac{1}{x}}}+c \\
\end{align}\]
Answer
591.9k+ views
Hint: To solve this question, we will use the formula of integral which is given as
\[\int{{{e}^{x}}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx={{e}^{x}}f\left( x \right)+c\]
Where, f'(x) is the derivative of f(x).
We will use the function $f(x)\text{ as f}\left( x \right)=x{{e}^{\dfrac{1}{x}}}$ and use the formula above to get answer. Also, we will use the product rule of differentiation as:
\[\dfrac{d}{dx}\left( h\left( x \right)-g\left( x \right) \right)=h\left( x \right)\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}\left( h\left( x \right) \right)-g\left( x \right)\]
Complete step-by-step answer:
Given that, \[\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\]
Let \[I=\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\]
Now, write \[{{e}^{x+\dfrac{1}{x}}}={{e}^{x}}{{e}^{\dfrac{1}{x}}}\]
Using this in above value of I, we get:
\[I=\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x}}{{e}^{\dfrac{1}{x}}}dx}\]
Now, taking ${{e}^{x}}$ common one and multiplying ${{e}^{\dfrac{1}{x}}}$ inside in all terms we get:
\[I=\int{\left( {{e}^{x}}\left( {{e}^{\dfrac{1}{x}}}+x{{e}^{\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{\dfrac{1}{x}}} \right) \right)dx}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, assume $f\left( x \right)=x{{e}^{\dfrac{1}{x}}}$
We will differentiate f(x) in respect to x. To do so, we will apply product rule of differentiation which says that,
\[\dfrac{d}{dx}\left( h\left( x \right).g\left( x \right) \right)=h\left( x \right)\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}\left( h\left( x \right) \right).g\left( x \right)\]
Using product rule of differentiation taking
$h\left( x \right)=x\text{ and g}\left( x \right)={{e}^{\dfrac{1}{x}}}$ we get
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=f'\left( x \right)=x\dfrac{d}{dx}{{e}^{\dfrac{1}{x}}}+{{e}^{\dfrac{1}{x}}}\dfrac{d}{dx}x \\
& \Rightarrow f'\left( x \right)=x{{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)+{{e}^{\dfrac{1}{x}}}-1 \\
& \text{here }\dfrac{d}{dx}\left( {{e}^{\dfrac{1}{x}}} \right)={{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)\text{ and }\dfrac{d}{dx}\left( x \right)=1 \\
& \Rightarrow f'\left( x \right)=x{{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)+{{e}^{\dfrac{1}{x}}} \\
& \Rightarrow f'\left( x \right)=\dfrac{-{{e}^{\dfrac{1}{x}}}}{x}+{{e}^{\dfrac{1}{x}}} \\
\end{align}\]
Now, using the value of $f\left( x \right)=x{{e}^{\dfrac{1}{x}}}\text{ and f }\!\!'\!\!\text{ }\left( x \right)={{e}^{\dfrac{1}{x}}}-\dfrac{{{e}^{\dfrac{1}{x}}}}{x}$ in equation (i) we get:
\[I={{e}^{x}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx\]
Now, finally we will use a formula which states that
\[\begin{align}
& \int{{{e}^{x}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx}={{e}^{x}}f\left( x \right)+c \\
& \Rightarrow I=\int{{{e}^{x}}\left\{ {{e}^{x}}\left( {{e}^{\dfrac{1}{x}}}+x{{e}^{\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{\dfrac{1}{x}}} \right) \right\}dx} \\
\end{align}\]
Using above formula, we get:
\[I={{e}^{x}}\left\{ x{{e}^{\dfrac{1}{x}}} \right\}+c\]
So, the value of integral \[I={{e}^{x}}\left\{ x{{e}^{\dfrac{1}{x}}} \right\}+c\]
\[I=x{{e}^{x}}-{{e}^{\dfrac{1}{x}}}+c\]
Taking \[{{e}^{x}}\times {{e}^{\dfrac{1}{x}}}={{e}^{x+\dfrac{1}{x}}}\]
\[I=x{{e}^{x+\dfrac{1}{x}}}+c\]
Hence, the value of integral $I=x{{e}^{x+\dfrac{1}{x}}}+c$
So, the correct answer is “Option B”.
Note: Another way to solve this question is by using product rule of integration, which is given as \[\int{f\left( x \right)}g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)}dx-\int{\dfrac{d}{dx}\left( f\left( x \right) \right)}\int{g\left( x \right)}dxdx\] here we can open the bracket $\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}$ and take $1\times {{e}^{x+\dfrac{1}{x}}}+x{{e}^{x+\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{x+\dfrac{1}{x}}}$ and apply product rule of integration separately to get the results. Although this method is long and involves a lot of calculation, mistakes are possible. So, this method should be avoided.
\[\int{{{e}^{x}}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx={{e}^{x}}f\left( x \right)+c\]
Where, f'(x) is the derivative of f(x).
We will use the function $f(x)\text{ as f}\left( x \right)=x{{e}^{\dfrac{1}{x}}}$ and use the formula above to get answer. Also, we will use the product rule of differentiation as:
\[\dfrac{d}{dx}\left( h\left( x \right)-g\left( x \right) \right)=h\left( x \right)\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}\left( h\left( x \right) \right)-g\left( x \right)\]
Complete step-by-step answer:
Given that, \[\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\]
Let \[I=\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\]
Now, write \[{{e}^{x+\dfrac{1}{x}}}={{e}^{x}}{{e}^{\dfrac{1}{x}}}\]
Using this in above value of I, we get:
\[I=\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x}}{{e}^{\dfrac{1}{x}}}dx}\]
Now, taking ${{e}^{x}}$ common one and multiplying ${{e}^{\dfrac{1}{x}}}$ inside in all terms we get:
\[I=\int{\left( {{e}^{x}}\left( {{e}^{\dfrac{1}{x}}}+x{{e}^{\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{\dfrac{1}{x}}} \right) \right)dx}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, assume $f\left( x \right)=x{{e}^{\dfrac{1}{x}}}$
We will differentiate f(x) in respect to x. To do so, we will apply product rule of differentiation which says that,
\[\dfrac{d}{dx}\left( h\left( x \right).g\left( x \right) \right)=h\left( x \right)\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}\left( h\left( x \right) \right).g\left( x \right)\]
Using product rule of differentiation taking
$h\left( x \right)=x\text{ and g}\left( x \right)={{e}^{\dfrac{1}{x}}}$ we get
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=f'\left( x \right)=x\dfrac{d}{dx}{{e}^{\dfrac{1}{x}}}+{{e}^{\dfrac{1}{x}}}\dfrac{d}{dx}x \\
& \Rightarrow f'\left( x \right)=x{{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)+{{e}^{\dfrac{1}{x}}}-1 \\
& \text{here }\dfrac{d}{dx}\left( {{e}^{\dfrac{1}{x}}} \right)={{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)\text{ and }\dfrac{d}{dx}\left( x \right)=1 \\
& \Rightarrow f'\left( x \right)=x{{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)+{{e}^{\dfrac{1}{x}}} \\
& \Rightarrow f'\left( x \right)=\dfrac{-{{e}^{\dfrac{1}{x}}}}{x}+{{e}^{\dfrac{1}{x}}} \\
\end{align}\]
Now, using the value of $f\left( x \right)=x{{e}^{\dfrac{1}{x}}}\text{ and f }\!\!'\!\!\text{ }\left( x \right)={{e}^{\dfrac{1}{x}}}-\dfrac{{{e}^{\dfrac{1}{x}}}}{x}$ in equation (i) we get:
\[I={{e}^{x}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx\]
Now, finally we will use a formula which states that
\[\begin{align}
& \int{{{e}^{x}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx}={{e}^{x}}f\left( x \right)+c \\
& \Rightarrow I=\int{{{e}^{x}}\left\{ {{e}^{x}}\left( {{e}^{\dfrac{1}{x}}}+x{{e}^{\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{\dfrac{1}{x}}} \right) \right\}dx} \\
\end{align}\]
Using above formula, we get:
\[I={{e}^{x}}\left\{ x{{e}^{\dfrac{1}{x}}} \right\}+c\]
So, the value of integral \[I={{e}^{x}}\left\{ x{{e}^{\dfrac{1}{x}}} \right\}+c\]
\[I=x{{e}^{x}}-{{e}^{\dfrac{1}{x}}}+c\]
Taking \[{{e}^{x}}\times {{e}^{\dfrac{1}{x}}}={{e}^{x+\dfrac{1}{x}}}\]
\[I=x{{e}^{x+\dfrac{1}{x}}}+c\]
Hence, the value of integral $I=x{{e}^{x+\dfrac{1}{x}}}+c$
So, the correct answer is “Option B”.
Note: Another way to solve this question is by using product rule of integration, which is given as \[\int{f\left( x \right)}g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)}dx-\int{\dfrac{d}{dx}\left( f\left( x \right) \right)}\int{g\left( x \right)}dxdx\] here we can open the bracket $\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}$ and take $1\times {{e}^{x+\dfrac{1}{x}}}+x{{e}^{x+\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{x+\dfrac{1}{x}}}$ and apply product rule of integration separately to get the results. Although this method is long and involves a lot of calculation, mistakes are possible. So, this method should be avoided.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

