
The value of integral \[\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\] is equal to
\[\begin{align}
& A.\left( x-1 \right){{e}^{x+\dfrac{1}{x}}}+c \\
& B.x{{e}^{x+\dfrac{1}{x}}}+c \\
& C.\left( x+1 \right){{e}^{x+\dfrac{1}{x}}}+c \\
& D.-x{{e}^{x+\dfrac{1}{x}}}+c \\
\end{align}\]
Answer
577.8k+ views
Hint: To solve this question, we will use the formula of integral which is given as
\[\int{{{e}^{x}}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx={{e}^{x}}f\left( x \right)+c\]
Where, f'(x) is the derivative of f(x).
We will use the function $f(x)\text{ as f}\left( x \right)=x{{e}^{\dfrac{1}{x}}}$ and use the formula above to get answer. Also, we will use the product rule of differentiation as:
\[\dfrac{d}{dx}\left( h\left( x \right)-g\left( x \right) \right)=h\left( x \right)\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}\left( h\left( x \right) \right)-g\left( x \right)\]
Complete step-by-step answer:
Given that, \[\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\]
Let \[I=\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\]
Now, write \[{{e}^{x+\dfrac{1}{x}}}={{e}^{x}}{{e}^{\dfrac{1}{x}}}\]
Using this in above value of I, we get:
\[I=\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x}}{{e}^{\dfrac{1}{x}}}dx}\]
Now, taking ${{e}^{x}}$ common one and multiplying ${{e}^{\dfrac{1}{x}}}$ inside in all terms we get:
\[I=\int{\left( {{e}^{x}}\left( {{e}^{\dfrac{1}{x}}}+x{{e}^{\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{\dfrac{1}{x}}} \right) \right)dx}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, assume $f\left( x \right)=x{{e}^{\dfrac{1}{x}}}$
We will differentiate f(x) in respect to x. To do so, we will apply product rule of differentiation which says that,
\[\dfrac{d}{dx}\left( h\left( x \right).g\left( x \right) \right)=h\left( x \right)\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}\left( h\left( x \right) \right).g\left( x \right)\]
Using product rule of differentiation taking
$h\left( x \right)=x\text{ and g}\left( x \right)={{e}^{\dfrac{1}{x}}}$ we get
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=f'\left( x \right)=x\dfrac{d}{dx}{{e}^{\dfrac{1}{x}}}+{{e}^{\dfrac{1}{x}}}\dfrac{d}{dx}x \\
& \Rightarrow f'\left( x \right)=x{{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)+{{e}^{\dfrac{1}{x}}}-1 \\
& \text{here }\dfrac{d}{dx}\left( {{e}^{\dfrac{1}{x}}} \right)={{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)\text{ and }\dfrac{d}{dx}\left( x \right)=1 \\
& \Rightarrow f'\left( x \right)=x{{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)+{{e}^{\dfrac{1}{x}}} \\
& \Rightarrow f'\left( x \right)=\dfrac{-{{e}^{\dfrac{1}{x}}}}{x}+{{e}^{\dfrac{1}{x}}} \\
\end{align}\]
Now, using the value of $f\left( x \right)=x{{e}^{\dfrac{1}{x}}}\text{ and f }\!\!'\!\!\text{ }\left( x \right)={{e}^{\dfrac{1}{x}}}-\dfrac{{{e}^{\dfrac{1}{x}}}}{x}$ in equation (i) we get:
\[I={{e}^{x}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx\]
Now, finally we will use a formula which states that
\[\begin{align}
& \int{{{e}^{x}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx}={{e}^{x}}f\left( x \right)+c \\
& \Rightarrow I=\int{{{e}^{x}}\left\{ {{e}^{x}}\left( {{e}^{\dfrac{1}{x}}}+x{{e}^{\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{\dfrac{1}{x}}} \right) \right\}dx} \\
\end{align}\]
Using above formula, we get:
\[I={{e}^{x}}\left\{ x{{e}^{\dfrac{1}{x}}} \right\}+c\]
So, the value of integral \[I={{e}^{x}}\left\{ x{{e}^{\dfrac{1}{x}}} \right\}+c\]
\[I=x{{e}^{x}}-{{e}^{\dfrac{1}{x}}}+c\]
Taking \[{{e}^{x}}\times {{e}^{\dfrac{1}{x}}}={{e}^{x+\dfrac{1}{x}}}\]
\[I=x{{e}^{x+\dfrac{1}{x}}}+c\]
Hence, the value of integral $I=x{{e}^{x+\dfrac{1}{x}}}+c$
So, the correct answer is “Option B”.
Note: Another way to solve this question is by using product rule of integration, which is given as \[\int{f\left( x \right)}g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)}dx-\int{\dfrac{d}{dx}\left( f\left( x \right) \right)}\int{g\left( x \right)}dxdx\] here we can open the bracket $\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}$ and take $1\times {{e}^{x+\dfrac{1}{x}}}+x{{e}^{x+\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{x+\dfrac{1}{x}}}$ and apply product rule of integration separately to get the results. Although this method is long and involves a lot of calculation, mistakes are possible. So, this method should be avoided.
\[\int{{{e}^{x}}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx={{e}^{x}}f\left( x \right)+c\]
Where, f'(x) is the derivative of f(x).
We will use the function $f(x)\text{ as f}\left( x \right)=x{{e}^{\dfrac{1}{x}}}$ and use the formula above to get answer. Also, we will use the product rule of differentiation as:
\[\dfrac{d}{dx}\left( h\left( x \right)-g\left( x \right) \right)=h\left( x \right)\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}\left( h\left( x \right) \right)-g\left( x \right)\]
Complete step-by-step answer:
Given that, \[\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\]
Let \[I=\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}dx}\]
Now, write \[{{e}^{x+\dfrac{1}{x}}}={{e}^{x}}{{e}^{\dfrac{1}{x}}}\]
Using this in above value of I, we get:
\[I=\int{\left( 1+x-\dfrac{1}{x} \right){{e}^{x}}{{e}^{\dfrac{1}{x}}}dx}\]
Now, taking ${{e}^{x}}$ common one and multiplying ${{e}^{\dfrac{1}{x}}}$ inside in all terms we get:
\[I=\int{\left( {{e}^{x}}\left( {{e}^{\dfrac{1}{x}}}+x{{e}^{\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{\dfrac{1}{x}}} \right) \right)dx}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, assume $f\left( x \right)=x{{e}^{\dfrac{1}{x}}}$
We will differentiate f(x) in respect to x. To do so, we will apply product rule of differentiation which says that,
\[\dfrac{d}{dx}\left( h\left( x \right).g\left( x \right) \right)=h\left( x \right)\dfrac{d}{dx}g\left( x \right)+\dfrac{d}{dx}\left( h\left( x \right) \right).g\left( x \right)\]
Using product rule of differentiation taking
$h\left( x \right)=x\text{ and g}\left( x \right)={{e}^{\dfrac{1}{x}}}$ we get
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=f'\left( x \right)=x\dfrac{d}{dx}{{e}^{\dfrac{1}{x}}}+{{e}^{\dfrac{1}{x}}}\dfrac{d}{dx}x \\
& \Rightarrow f'\left( x \right)=x{{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)+{{e}^{\dfrac{1}{x}}}-1 \\
& \text{here }\dfrac{d}{dx}\left( {{e}^{\dfrac{1}{x}}} \right)={{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)\text{ and }\dfrac{d}{dx}\left( x \right)=1 \\
& \Rightarrow f'\left( x \right)=x{{e}^{\dfrac{1}{x}}}\left( \dfrac{-1}{{{x}^{2}}} \right)+{{e}^{\dfrac{1}{x}}} \\
& \Rightarrow f'\left( x \right)=\dfrac{-{{e}^{\dfrac{1}{x}}}}{x}+{{e}^{\dfrac{1}{x}}} \\
\end{align}\]
Now, using the value of $f\left( x \right)=x{{e}^{\dfrac{1}{x}}}\text{ and f }\!\!'\!\!\text{ }\left( x \right)={{e}^{\dfrac{1}{x}}}-\dfrac{{{e}^{\dfrac{1}{x}}}}{x}$ in equation (i) we get:
\[I={{e}^{x}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx\]
Now, finally we will use a formula which states that
\[\begin{align}
& \int{{{e}^{x}}\left\{ f\left( x \right)+f'\left( x \right) \right\}dx}={{e}^{x}}f\left( x \right)+c \\
& \Rightarrow I=\int{{{e}^{x}}\left\{ {{e}^{x}}\left( {{e}^{\dfrac{1}{x}}}+x{{e}^{\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{\dfrac{1}{x}}} \right) \right\}dx} \\
\end{align}\]
Using above formula, we get:
\[I={{e}^{x}}\left\{ x{{e}^{\dfrac{1}{x}}} \right\}+c\]
So, the value of integral \[I={{e}^{x}}\left\{ x{{e}^{\dfrac{1}{x}}} \right\}+c\]
\[I=x{{e}^{x}}-{{e}^{\dfrac{1}{x}}}+c\]
Taking \[{{e}^{x}}\times {{e}^{\dfrac{1}{x}}}={{e}^{x+\dfrac{1}{x}}}\]
\[I=x{{e}^{x+\dfrac{1}{x}}}+c\]
Hence, the value of integral $I=x{{e}^{x+\dfrac{1}{x}}}+c$
So, the correct answer is “Option B”.
Note: Another way to solve this question is by using product rule of integration, which is given as \[\int{f\left( x \right)}g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)}dx-\int{\dfrac{d}{dx}\left( f\left( x \right) \right)}\int{g\left( x \right)}dxdx\] here we can open the bracket $\left( 1+x-\dfrac{1}{x} \right){{e}^{x+\dfrac{1}{x}}}$ and take $1\times {{e}^{x+\dfrac{1}{x}}}+x{{e}^{x+\dfrac{1}{x}}}-\dfrac{1}{x}{{e}^{x+\dfrac{1}{x}}}$ and apply product rule of integration separately to get the results. Although this method is long and involves a lot of calculation, mistakes are possible. So, this method should be avoided.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

