
The value of integral $\int{\dfrac{dx}{\left( \sqrt{1+\sqrt{x}} \right)\sqrt{x-{{x}^{2}}}}}$ is equal to, where C is constant of integration.
\[\begin{align}
& A.2\sqrt{\dfrac{1+\sqrt{x}}{1-\sqrt{x}}}+C \\
& B.-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+C \\
& C.-2\sqrt{\dfrac{1+\sqrt{x}}{1-\sqrt{x}}}+C \\
& D.-1\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+C \\
\end{align}\]
Answer
588.3k+ views
Hint: To solve this integral value, we will first solve the square root by substituting value of x as $x={{\cos }^{2}}\theta $. Doing so we will be able to eliminate the square root in the denominator of the given integral. In between we will use the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }$ also we will use ${{\cos }^{2}}x=2{{\cos }^{2}}x-1\Rightarrow \cos x=\dfrac{2{{\cos }^{2}}x-1}{2}$
For the final integral we will use $\int{{{\sec }^{2}}xdx=\tan x+C}$ where C is constant of integral. Because of our assumption we will arrive with $\theta $ as in answer, then we will replace $\theta $ to make answer in form of x using $\tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}$
Complete step-by-step answer:
Let the value of integral $\int{\dfrac{dx}{\left( \sqrt{1+\sqrt{x}} \right)\sqrt{x-{{x}^{2}}}}}$ be I.
\[I=\int{\dfrac{dx}{\left( \sqrt{1+\sqrt{x}} \right)\sqrt{x-{{x}^{2}}}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
To solve the under root present in the denominator. Let us assume $x={{\cos }^{2}}\theta $ then differentiating with respect to $\theta $ we get $dx=2\cos \theta \left( -\sin \theta \right)d\theta $ as $\dfrac{d}{d\theta }\left( \cos \theta \right)=-\sin \theta $
\[\Rightarrow dx=-2\sin \theta \cos \theta d\theta \]
Substituting this value in equation (i) we get:
\[I=\int{\dfrac{-2\sin \theta \cos \theta }{\left( 1+\sqrt{\left( {{\cos }^{2}}\theta \right)} \right)\sqrt{{{\cos }^{2}}\theta -{{\cos }^{4}}\theta }}}d\theta \]
Replacing $\sqrt{{{\cos }^{2}}\theta }=\cos \theta $ and taking ${{\cos }^{2}}\theta $ common factor $\sqrt{{{\cos }^{2}}\theta -{{\cos }^{4}}\theta }$ we get:
\[I=\int{\dfrac{-2\sin \theta \cos \theta }{\left( 1+\cos \theta \right)\cos \theta \sqrt{1-{{\cos }^{2}}\theta }}}d\theta \]
Now, using trigonometric identity
\[\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \Rightarrow 1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta \\
& \Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta } \\
\end{align}\]
Using this in above we get:
\[I=\int{\dfrac{-2\sin \theta \cos \theta }{\left( 1+\cos \theta \right)\left( \sin \theta \right)\left( \cos \theta \right)}}d\theta \]
Cancelling $\sin \theta \cos \theta $ we get:
\[I=\int{\dfrac{-2}{\left( 1+\cos \theta \right)}}d\theta \]
Using the trigonometric identity of cos2x as
\[\begin{align}
& \cos 2x=2{{\cos }^{2}}x-1 \\
& \Rightarrow 1+\cos 2x=2{{\cos }^{2}}x \\
\end{align}\]
Replacing 2x = y we get $\dfrac{y}{2}=x$
\[1+\cos y=2{{\cos }^{2}}\dfrac{y}{2}\]
Using this in above replacing by $\theta $ we get:
\[\begin{align}
& 1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2} \\
& I=\int{\dfrac{-2}{\left( 2{{\cos }^{2}}\dfrac{\theta }{2} \right)}d\theta } \\
& I=-\int{\dfrac{1}{{{\cos }^{2}}\dfrac{\theta }{2}}}d\theta \\
\end{align}\]
Now, $\cos x=\dfrac{1}{\sec x}\Rightarrow \sec x=\dfrac{1}{\cos x}$
\[I=-\int{{{\sec }^{2}}}\dfrac{\theta }{2}d\theta \]
And the value of integral of $\int{{{\sec }^{2}}xdx=\tan x}$ using this in value of I.
\[I=\dfrac{-\tan \dfrac{\theta }{2}}{\dfrac{1}{2}}+C\]
Where C is constant of integration.
\[I=-2\tan \dfrac{\theta }{2}+C\]
Now, we need an answer in the form of x so we need $\tan \dfrac{\theta }{2}$ as in form of $\cos \theta $ so that we can calculate the answer in form of x.
Now, we have a trigonometric identity as $\tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}$
Using this we get:
\[I=-2\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}+C\]
Now as ${{\cos }^{2}}\theta =x\Rightarrow \cos \theta =\sqrt{x}$
\[I=-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+C\]
Therefore, the value of given integral is $-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+C$
So, the correct answer is “Option C”.
Note: The value of $\tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}$ can be obtained by using the trigonometric identity $\cos \theta =\dfrac{1-{{\tan }^{2}}\dfrac{\theta }{2}}{1+{{\tan }^{2}}\dfrac{\theta }{2}}$
Cross multiplication of above given:
\[\begin{align}
& \left( 1+{{\tan }^{2}}\dfrac{\theta }{2} \right)\cos \theta =1-{{\tan }^{2}}\dfrac{\theta }{2} \\
& \cos \theta +\cos \theta {{\tan }^{2}}\dfrac{\theta }{2}=1-{{\tan }^{2}}\dfrac{\theta }{2} \\
& \cos \theta +\cos \theta {{\tan }^{2}}\dfrac{\theta }{2}+{{\tan }^{2}}\dfrac{\theta }{2}=1 \\
\end{align}\]
Taking ${{\tan }^{2}}\dfrac{\theta }{2}$ we get:
\[\begin{align}
& \cos \theta +{{\tan }^{2}}\dfrac{\theta }{2}\left( \cos \theta +1 \right)=1 \\
& {{\tan }^{2}}\dfrac{\theta }{2}\left( \cos \theta +1 \right)=1-\cos \theta \\
& {{\tan }^{2}}\dfrac{\theta }{2}=\dfrac{1-\cos \theta }{1+\cos \theta } \\
& \tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }} \\
\end{align}\]
Hence, \[\tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}\] is obtained.
For the final integral we will use $\int{{{\sec }^{2}}xdx=\tan x+C}$ where C is constant of integral. Because of our assumption we will arrive with $\theta $ as in answer, then we will replace $\theta $ to make answer in form of x using $\tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}$
Complete step-by-step answer:
Let the value of integral $\int{\dfrac{dx}{\left( \sqrt{1+\sqrt{x}} \right)\sqrt{x-{{x}^{2}}}}}$ be I.
\[I=\int{\dfrac{dx}{\left( \sqrt{1+\sqrt{x}} \right)\sqrt{x-{{x}^{2}}}}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
To solve the under root present in the denominator. Let us assume $x={{\cos }^{2}}\theta $ then differentiating with respect to $\theta $ we get $dx=2\cos \theta \left( -\sin \theta \right)d\theta $ as $\dfrac{d}{d\theta }\left( \cos \theta \right)=-\sin \theta $
\[\Rightarrow dx=-2\sin \theta \cos \theta d\theta \]
Substituting this value in equation (i) we get:
\[I=\int{\dfrac{-2\sin \theta \cos \theta }{\left( 1+\sqrt{\left( {{\cos }^{2}}\theta \right)} \right)\sqrt{{{\cos }^{2}}\theta -{{\cos }^{4}}\theta }}}d\theta \]
Replacing $\sqrt{{{\cos }^{2}}\theta }=\cos \theta $ and taking ${{\cos }^{2}}\theta $ common factor $\sqrt{{{\cos }^{2}}\theta -{{\cos }^{4}}\theta }$ we get:
\[I=\int{\dfrac{-2\sin \theta \cos \theta }{\left( 1+\cos \theta \right)\cos \theta \sqrt{1-{{\cos }^{2}}\theta }}}d\theta \]
Now, using trigonometric identity
\[\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \Rightarrow 1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta \\
& \Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta } \\
\end{align}\]
Using this in above we get:
\[I=\int{\dfrac{-2\sin \theta \cos \theta }{\left( 1+\cos \theta \right)\left( \sin \theta \right)\left( \cos \theta \right)}}d\theta \]
Cancelling $\sin \theta \cos \theta $ we get:
\[I=\int{\dfrac{-2}{\left( 1+\cos \theta \right)}}d\theta \]
Using the trigonometric identity of cos2x as
\[\begin{align}
& \cos 2x=2{{\cos }^{2}}x-1 \\
& \Rightarrow 1+\cos 2x=2{{\cos }^{2}}x \\
\end{align}\]
Replacing 2x = y we get $\dfrac{y}{2}=x$
\[1+\cos y=2{{\cos }^{2}}\dfrac{y}{2}\]
Using this in above replacing by $\theta $ we get:
\[\begin{align}
& 1+\cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2} \\
& I=\int{\dfrac{-2}{\left( 2{{\cos }^{2}}\dfrac{\theta }{2} \right)}d\theta } \\
& I=-\int{\dfrac{1}{{{\cos }^{2}}\dfrac{\theta }{2}}}d\theta \\
\end{align}\]
Now, $\cos x=\dfrac{1}{\sec x}\Rightarrow \sec x=\dfrac{1}{\cos x}$
\[I=-\int{{{\sec }^{2}}}\dfrac{\theta }{2}d\theta \]
And the value of integral of $\int{{{\sec }^{2}}xdx=\tan x}$ using this in value of I.
\[I=\dfrac{-\tan \dfrac{\theta }{2}}{\dfrac{1}{2}}+C\]
Where C is constant of integration.
\[I=-2\tan \dfrac{\theta }{2}+C\]
Now, we need an answer in the form of x so we need $\tan \dfrac{\theta }{2}$ as in form of $\cos \theta $ so that we can calculate the answer in form of x.
Now, we have a trigonometric identity as $\tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}$
Using this we get:
\[I=-2\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}+C\]
Now as ${{\cos }^{2}}\theta =x\Rightarrow \cos \theta =\sqrt{x}$
\[I=-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+C\]
Therefore, the value of given integral is $-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+C$
So, the correct answer is “Option C”.
Note: The value of $\tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}$ can be obtained by using the trigonometric identity $\cos \theta =\dfrac{1-{{\tan }^{2}}\dfrac{\theta }{2}}{1+{{\tan }^{2}}\dfrac{\theta }{2}}$
Cross multiplication of above given:
\[\begin{align}
& \left( 1+{{\tan }^{2}}\dfrac{\theta }{2} \right)\cos \theta =1-{{\tan }^{2}}\dfrac{\theta }{2} \\
& \cos \theta +\cos \theta {{\tan }^{2}}\dfrac{\theta }{2}=1-{{\tan }^{2}}\dfrac{\theta }{2} \\
& \cos \theta +\cos \theta {{\tan }^{2}}\dfrac{\theta }{2}+{{\tan }^{2}}\dfrac{\theta }{2}=1 \\
\end{align}\]
Taking ${{\tan }^{2}}\dfrac{\theta }{2}$ we get:
\[\begin{align}
& \cos \theta +{{\tan }^{2}}\dfrac{\theta }{2}\left( \cos \theta +1 \right)=1 \\
& {{\tan }^{2}}\dfrac{\theta }{2}\left( \cos \theta +1 \right)=1-\cos \theta \\
& {{\tan }^{2}}\dfrac{\theta }{2}=\dfrac{1-\cos \theta }{1+\cos \theta } \\
& \tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }} \\
\end{align}\]
Hence, \[\tan \dfrac{\theta }{2}=\sqrt{\dfrac{1-\cos \theta }{1+\cos \theta }}\] is obtained.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

