
The value of gravitational acceleration g at the centre of the earth is: -
A. Infinite
B. \[9.8m/{s^2}\]
C. \[32.2\,m/{s^2}\]
D. Zero
Answer
483.9k+ views
Hint: According to Newton, Gravity decreases by the square of the increased distance divided by the original distance from an object's centre of mass.
Complete step by step solution:
We know that \[g = \dfrac{{GM}}{{{r^2}}}\] where M is the mass of the earth r is the radius of the earth(or the distance between the centre of the earth and you standing on its surface) G is the gravitational constant.
\[g = \dfrac{{GM}}{{{r^2}}}\]
Now by multiplying and dividing the RHS by volume ‘V’ we get,
\[g = \dfrac{{GM}}{V} \times V \times \dfrac{1}{{{r^2}}}\]
Now we know that \[\dfrac{M}{V}\]is density ‘\[\rho \]’
Therefore,
\[g = \dfrac{{\rho GV}}{{{r^2}}}\]
So now that for a sphere \[V = \dfrac{4}{3}\pi {r^3}\]then we get,
\[\begin{array}{l}
g = \dfrac{4}{3}\pi {r^3} \times \dfrac{{\rho G}}{{{r^2}}}\\
g = \dfrac{{4\pi r\rho G}}{3}
\end{array}\]
At the centre of the earth r=0 then the whole expression becomes 0
Thus g=0 at the centre of the earth
Therefore, option D is correct.
Note: As you approach the core, the pull from all sides of Earth gets stronger and stronger, once you reach the very centre, the pull is roughly the same form all sides. This would mean that at the centre of the Earth the mass of the earth is equally distributed in all directions so pulling equally in all directions all the gravity cancels for a net zero pull. However, it is not a perfect sphere and has bumps and different masses in different areas. Therefore, you would feel slight gravitational attraction to some areas but it would be very minimal. As the distance from the centre decreases, the acceleration due to gravity also decreases. As the distance from the centre decreases, the acceleration due to gravity also decreases.
Complete step by step solution:
We know that \[g = \dfrac{{GM}}{{{r^2}}}\] where M is the mass of the earth r is the radius of the earth(or the distance between the centre of the earth and you standing on its surface) G is the gravitational constant.
\[g = \dfrac{{GM}}{{{r^2}}}\]
Now by multiplying and dividing the RHS by volume ‘V’ we get,
\[g = \dfrac{{GM}}{V} \times V \times \dfrac{1}{{{r^2}}}\]
Now we know that \[\dfrac{M}{V}\]is density ‘\[\rho \]’
Therefore,
\[g = \dfrac{{\rho GV}}{{{r^2}}}\]
So now that for a sphere \[V = \dfrac{4}{3}\pi {r^3}\]then we get,
\[\begin{array}{l}
g = \dfrac{4}{3}\pi {r^3} \times \dfrac{{\rho G}}{{{r^2}}}\\
g = \dfrac{{4\pi r\rho G}}{3}
\end{array}\]
At the centre of the earth r=0 then the whole expression becomes 0
Thus g=0 at the centre of the earth
Therefore, option D is correct.
Note: As you approach the core, the pull from all sides of Earth gets stronger and stronger, once you reach the very centre, the pull is roughly the same form all sides. This would mean that at the centre of the Earth the mass of the earth is equally distributed in all directions so pulling equally in all directions all the gravity cancels for a net zero pull. However, it is not a perfect sphere and has bumps and different masses in different areas. Therefore, you would feel slight gravitational attraction to some areas but it would be very minimal. As the distance from the centre decreases, the acceleration due to gravity also decreases. As the distance from the centre decreases, the acceleration due to gravity also decreases.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
