Answer
Verified
444.9k+ views
Hint: The value of the given trigonometric expression can be found by using the below formulas. Solve the numerator and the denominator separately and then put their results over each other to find the value. The ratio of cosine function over sine function is cotangent (cot) function and the inverse of cotangent is tangent function.
Formulas used:
$ \cos x + \cos y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right),\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ , where x and y are the angles which can be equal or unequal.
Complete step-by-step answer:
We are given to find the value of a trigonometric expression $ \dfrac{{\cos 4x + \cos 3x + \cos 2x}}{{\sin 4x + \sin 3x + \sin 2x}} $
Let us consider the numerator first and it is
$ \cos 4x + \cos 3x + \cos 2x $
Here as we can see there are three terms with cosine functions with different angle measures.
So let us consider the first and the third terms, $ \cos 4x + \cos 2x $ .
On comparing the above two terms with $ \cos x + \cos y $ , we get x is equal to 4x and y is equal to 2x and
$ \cos x + \cos y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ .
On substituting x as 4x and y as 2x in the above formula, we get
$ \cos 4x + \cos 2x = 2\cos \left( {\dfrac{{4x + 2x}}{2}} \right)\cos \left( {\dfrac{{4x - 2x}}{2}} \right) $
$ \Rightarrow \cos 4x + \cos 2x = 2\cos \left( {\dfrac{{6x}}{2}} \right)\cos \left( {\dfrac{{2x}}{2}} \right) = 2\cos 3x\cos x $
On substituting the value of $ \cos 4x + \cos 2x $ in $ \cos 4x + \cos 3x + \cos 2x $ , we get
$ \cos 4x + \cos 3x + \cos 2x = \cos 4x + \cos 2x + \cos 3x = 2\cos 3x\cos x + \cos 3x $
$ \therefore \cos 4x + \cos 3x + \cos 2x = \cos 3x\left( {2\cos x + 1} \right) $
Now, we are considering the numerator and it is $ \sin 4x + \sin 3x + \sin 2x $
Here as we can see there are three terms with sine functions with different angle measures.
So let us consider the first and the third terms, $ \sin 4x + \sin 2x $ .
On comparing the above two terms with $ \sin x + \sin y $ , we get x is equal to 4x and y is equal to 2x and
$ \sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ .
On substituting x as 4x and y as 2x in the above formula, we get
$ \sin 4x + \sin 2x = 2\sin \left( {\dfrac{{4x + 2x}}{2}} \right)\cos \left( {\dfrac{{4x - 2x}}{2}} \right) $
$ \Rightarrow \sin 4x + \sin 2x = 2\sin \left( {\dfrac{{6x}}{2}} \right)\cos \left( {\dfrac{{2x}}{2}} \right) = 2\sin 3x\cos x $
On substituting the value of $ \sin 4x + \sin 2x $ in $ \sin 4x + \sin 3x + \sin 2x $ , we get
$ \Rightarrow \sin 4x + \sin 3x + \sin 2x = \sin 4x + \sin 2x + \sin 3x = 2\sin 3x\cos x + \sin 3x $
$ \therefore \sin 4x + \sin 3x + \sin 2x = \sin 3x\left( {2\cos x + 1} \right) $
Now we are combining the values of numerator and denominator.
$ \Rightarrow \dfrac{{\cos 4x + \cos 3x + \cos 2x}}{{\sin 4x + \sin 3x + \sin 2x}} = \dfrac{{\cos 3x\left( {2\cos x + 1} \right)}}{{\sin 3x\left( {2\cos x + 1} \right)}} = \dfrac{{\cos 3x}}{{\sin 3x}} $
Here, we have got a ratio of cosine and sine functions, which is equal to the cotangent function (cot).
$ \Rightarrow \dfrac{{\cos 3x}}{{\sin 3x}} = cot3x $
$ \therefore \dfrac{{\cos 4x + \cos 3x + \cos 2x}}{{\sin 4x + \sin 3x + \sin 2x}} = cot3x $
Therefore, the correct option is Option A, $ cot3x $ .
So, the correct answer is “Option A”.
Note: In the formula $ \cos x + \cos y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ , we have both the right hand side terms as cosine functions whereas in the formula $ \sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ , both the right hand side terms are not sine functions (one is sine and other is cosine). So we should be careful while writing the formulas.
Formulas used:
$ \cos x + \cos y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right),\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ , where x and y are the angles which can be equal or unequal.
Complete step-by-step answer:
We are given to find the value of a trigonometric expression $ \dfrac{{\cos 4x + \cos 3x + \cos 2x}}{{\sin 4x + \sin 3x + \sin 2x}} $
Let us consider the numerator first and it is
$ \cos 4x + \cos 3x + \cos 2x $
Here as we can see there are three terms with cosine functions with different angle measures.
So let us consider the first and the third terms, $ \cos 4x + \cos 2x $ .
On comparing the above two terms with $ \cos x + \cos y $ , we get x is equal to 4x and y is equal to 2x and
$ \cos x + \cos y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ .
On substituting x as 4x and y as 2x in the above formula, we get
$ \cos 4x + \cos 2x = 2\cos \left( {\dfrac{{4x + 2x}}{2}} \right)\cos \left( {\dfrac{{4x - 2x}}{2}} \right) $
$ \Rightarrow \cos 4x + \cos 2x = 2\cos \left( {\dfrac{{6x}}{2}} \right)\cos \left( {\dfrac{{2x}}{2}} \right) = 2\cos 3x\cos x $
On substituting the value of $ \cos 4x + \cos 2x $ in $ \cos 4x + \cos 3x + \cos 2x $ , we get
$ \cos 4x + \cos 3x + \cos 2x = \cos 4x + \cos 2x + \cos 3x = 2\cos 3x\cos x + \cos 3x $
$ \therefore \cos 4x + \cos 3x + \cos 2x = \cos 3x\left( {2\cos x + 1} \right) $
Now, we are considering the numerator and it is $ \sin 4x + \sin 3x + \sin 2x $
Here as we can see there are three terms with sine functions with different angle measures.
So let us consider the first and the third terms, $ \sin 4x + \sin 2x $ .
On comparing the above two terms with $ \sin x + \sin y $ , we get x is equal to 4x and y is equal to 2x and
$ \sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ .
On substituting x as 4x and y as 2x in the above formula, we get
$ \sin 4x + \sin 2x = 2\sin \left( {\dfrac{{4x + 2x}}{2}} \right)\cos \left( {\dfrac{{4x - 2x}}{2}} \right) $
$ \Rightarrow \sin 4x + \sin 2x = 2\sin \left( {\dfrac{{6x}}{2}} \right)\cos \left( {\dfrac{{2x}}{2}} \right) = 2\sin 3x\cos x $
On substituting the value of $ \sin 4x + \sin 2x $ in $ \sin 4x + \sin 3x + \sin 2x $ , we get
$ \Rightarrow \sin 4x + \sin 3x + \sin 2x = \sin 4x + \sin 2x + \sin 3x = 2\sin 3x\cos x + \sin 3x $
$ \therefore \sin 4x + \sin 3x + \sin 2x = \sin 3x\left( {2\cos x + 1} \right) $
Now we are combining the values of numerator and denominator.
$ \Rightarrow \dfrac{{\cos 4x + \cos 3x + \cos 2x}}{{\sin 4x + \sin 3x + \sin 2x}} = \dfrac{{\cos 3x\left( {2\cos x + 1} \right)}}{{\sin 3x\left( {2\cos x + 1} \right)}} = \dfrac{{\cos 3x}}{{\sin 3x}} $
Here, we have got a ratio of cosine and sine functions, which is equal to the cotangent function (cot).
$ \Rightarrow \dfrac{{\cos 3x}}{{\sin 3x}} = cot3x $
$ \therefore \dfrac{{\cos 4x + \cos 3x + \cos 2x}}{{\sin 4x + \sin 3x + \sin 2x}} = cot3x $
Therefore, the correct option is Option A, $ cot3x $ .
So, the correct answer is “Option A”.
Note: In the formula $ \cos x + \cos y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ , we have both the right hand side terms as cosine functions whereas in the formula $ \sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ , both the right hand side terms are not sine functions (one is sine and other is cosine). So we should be careful while writing the formulas.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE