
The value of $\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }}$ is
$
a.{\text{ }}\cos 60^\circ \\
b.{\text{ sin}}60^\circ \\
c.{\text{ tan}}60^\circ \\
d.{\text{ sin3}}0^\circ \\
$
Answer
596.1k+ views
Hint: - Use $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
Given equation is
$\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }}$
Now substitute $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
\[
\Rightarrow \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{1 - {{\left( {\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}} \right)}^2}}} = \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{\dfrac{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }}{{{{\cos }^2}30^\circ }}}} = \dfrac{{2\sin 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \times \dfrac{{{{\cos }^2}30^\circ }}{{\cos 30^\circ }} \\
\Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \\
\]
As we know ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta ,{\text{ 2sin}}\theta {\text{cos}}\theta = \sin 2\theta $
\[ \Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} = \dfrac{{\sin 60^\circ }}{{\cos 60^\circ }} = \tan 60^\circ \]
So, this is the required answer.
Hence, option (c) is correct.
Note: - Whenever we face such types of problems, always remember the trigonometric identities which are written above then simplify the given problem statement using these identities we will get the required answer.
Given equation is
$\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }}$
Now substitute $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
\[
\Rightarrow \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{1 - {{\left( {\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}} \right)}^2}}} = \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{\dfrac{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }}{{{{\cos }^2}30^\circ }}}} = \dfrac{{2\sin 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \times \dfrac{{{{\cos }^2}30^\circ }}{{\cos 30^\circ }} \\
\Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \\
\]
As we know ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta ,{\text{ 2sin}}\theta {\text{cos}}\theta = \sin 2\theta $
\[ \Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} = \dfrac{{\sin 60^\circ }}{{\cos 60^\circ }} = \tan 60^\circ \]
So, this is the required answer.
Hence, option (c) is correct.
Note: - Whenever we face such types of problems, always remember the trigonometric identities which are written above then simplify the given problem statement using these identities we will get the required answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

