
The value of $\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }}$ is
$
a.{\text{ }}\cos 60^\circ \\
b.{\text{ sin}}60^\circ \\
c.{\text{ tan}}60^\circ \\
d.{\text{ sin3}}0^\circ \\
$
Answer
623.7k+ views
Hint: - Use $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
Given equation is
$\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }}$
Now substitute $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
\[
\Rightarrow \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{1 - {{\left( {\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}} \right)}^2}}} = \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{\dfrac{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }}{{{{\cos }^2}30^\circ }}}} = \dfrac{{2\sin 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \times \dfrac{{{{\cos }^2}30^\circ }}{{\cos 30^\circ }} \\
\Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \\
\]
As we know ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta ,{\text{ 2sin}}\theta {\text{cos}}\theta = \sin 2\theta $
\[ \Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} = \dfrac{{\sin 60^\circ }}{{\cos 60^\circ }} = \tan 60^\circ \]
So, this is the required answer.
Hence, option (c) is correct.
Note: - Whenever we face such types of problems, always remember the trigonometric identities which are written above then simplify the given problem statement using these identities we will get the required answer.
Given equation is
$\dfrac{{2\tan 30^\circ }}{{1 - {{\tan }^2}30^\circ }}$
Now substitute $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
\[
\Rightarrow \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{1 - {{\left( {\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}} \right)}^2}}} = \dfrac{{2\dfrac{{\sin 30^\circ }}{{\cos 30^\circ }}}}{{\dfrac{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }}{{{{\cos }^2}30^\circ }}}} = \dfrac{{2\sin 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \times \dfrac{{{{\cos }^2}30^\circ }}{{\cos 30^\circ }} \\
\Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} \\
\]
As we know ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta ,{\text{ 2sin}}\theta {\text{cos}}\theta = \sin 2\theta $
\[ \Rightarrow \dfrac{{2\sin 30^\circ \cos 30^\circ }}{{{{\cos }^2}30^\circ - {{\sin }^2}30^\circ }} = \dfrac{{\sin 60^\circ }}{{\cos 60^\circ }} = \tan 60^\circ \]
So, this is the required answer.
Hence, option (c) is correct.
Note: - Whenever we face such types of problems, always remember the trigonometric identities which are written above then simplify the given problem statement using these identities we will get the required answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

