
The value of $\dfrac{1}{{{\log }_{3}}e}+\dfrac{1}{{{\log }_{3}}{{e}^{2}}}+\dfrac{1}{{{\log }_{3}}{{e}^{4}}}+...$ upto infinite terms is:
(A) ${{\log }_{e}}9$
(B) 0
(C) 1
(D) ${{\log }_{e}}3$
Answer
619.5k+ views
Hint: We have to change the base of the logarithm so that the terms will get simplified and form a geometric progression. Then apply the formula of sum of infinite terms of a G.P. which is $S=\dfrac{a}{1-r}$, where $a$ is the first term and $r$ is the common ratio of the G.P.
Complete step-by-step answer:
There are different types of series but mainly we have to study three of them namely Arithmetic progression (A.P.), Geometric Progression (G.P.) and Harmonic Progression (H.P.). In this question geometric progression will be used.
In Mathematics, a G.P. also known as geometric sequence is a sequence of numbers where each term after its predecessor is obtained by multiplying the previous term with a fixed non-zero number known as the common ratio of the G.P.
For example: \[2,\text{ }4,\text{ }8,\text{ }16,\text{ }32,\text{ }.........\] is a G.P. with common ratio $2$.
Generally, G.P. is represented by $a,\text{ }a{{r}^{2}},\text{ }a{{r}^{3}},\text{ }\ldots \ldots \ldots $ where \[a\] is the first term and \[r\] is the common ratio.
Now, we have been given:
${{S}_{\infty }}=\text{Sum of infinite series}=\dfrac{1}{{{\log }_{3}}e}+\dfrac{1}{{{\log }_{3}}{{e}^{2}}}+\dfrac{1}{{{\log }_{3}}{{e}^{4}}}+.........\infty $
We can change the base of the logarithm by using the following formula:
\[{{\log }_{m}}n=\dfrac{1}{{{\log }_{n}}m}\]
For example; \[{{\log }_{3}}e=\dfrac{1}{{{\log }_{e}}3}\].
$\therefore {{S}_{\infty }}={{\log }_{e}}3+{{\log }_{{{e}^{2}}}}3+{{\log }_{{{e}^{3}}}}3+.........\infty $
Now, using the following property of logarithm: ${{\log }_{{{m}^{a}}}}n=\dfrac{1}{a}{{\log }_{m}}n$, we get
$\therefore {{S}_{\infty }}={{\log }_{e}}3+\dfrac{1}{2}{{\log }_{e}}3+\dfrac{1}{3}{{\log }_{e}}3+.........\infty $
We can clearly see that this a G.P. with the first term $a={{\log }_{e}}3$ and $r=\dfrac{1}{2}$.
$\therefore {{S}_{\infty }}=\dfrac{a}{1-r}=\dfrac{{{\log }_{e}}3}{1-\dfrac{1}{2}}=2{{\log }_{e}}3$
Now, using the rule that: \[a\times {{\log }_{m}}n={{\log }_{n}}({{n}^{a}})\], we get
${{S}_{\infty }}={{\log }_{e}}({{3}^{2}})={{\log }_{e}}9$
Hence the correct option is (A).
Note: Always try to convert the question in simplified form just as we did here. We first simplified the terms of the given sequence by converting the fractions into simple terms and then applied the formula for summation of infinite terms of a G.P. Here, we have to sum infinite terms so the formula for summation of $n$ terms cannot be used.
Complete step-by-step answer:
There are different types of series but mainly we have to study three of them namely Arithmetic progression (A.P.), Geometric Progression (G.P.) and Harmonic Progression (H.P.). In this question geometric progression will be used.
In Mathematics, a G.P. also known as geometric sequence is a sequence of numbers where each term after its predecessor is obtained by multiplying the previous term with a fixed non-zero number known as the common ratio of the G.P.
For example: \[2,\text{ }4,\text{ }8,\text{ }16,\text{ }32,\text{ }.........\] is a G.P. with common ratio $2$.
Generally, G.P. is represented by $a,\text{ }a{{r}^{2}},\text{ }a{{r}^{3}},\text{ }\ldots \ldots \ldots $ where \[a\] is the first term and \[r\] is the common ratio.
Now, we have been given:
${{S}_{\infty }}=\text{Sum of infinite series}=\dfrac{1}{{{\log }_{3}}e}+\dfrac{1}{{{\log }_{3}}{{e}^{2}}}+\dfrac{1}{{{\log }_{3}}{{e}^{4}}}+.........\infty $
We can change the base of the logarithm by using the following formula:
\[{{\log }_{m}}n=\dfrac{1}{{{\log }_{n}}m}\]
For example; \[{{\log }_{3}}e=\dfrac{1}{{{\log }_{e}}3}\].
$\therefore {{S}_{\infty }}={{\log }_{e}}3+{{\log }_{{{e}^{2}}}}3+{{\log }_{{{e}^{3}}}}3+.........\infty $
Now, using the following property of logarithm: ${{\log }_{{{m}^{a}}}}n=\dfrac{1}{a}{{\log }_{m}}n$, we get
$\therefore {{S}_{\infty }}={{\log }_{e}}3+\dfrac{1}{2}{{\log }_{e}}3+\dfrac{1}{3}{{\log }_{e}}3+.........\infty $
We can clearly see that this a G.P. with the first term $a={{\log }_{e}}3$ and $r=\dfrac{1}{2}$.
$\therefore {{S}_{\infty }}=\dfrac{a}{1-r}=\dfrac{{{\log }_{e}}3}{1-\dfrac{1}{2}}=2{{\log }_{e}}3$
Now, using the rule that: \[a\times {{\log }_{m}}n={{\log }_{n}}({{n}^{a}})\], we get
${{S}_{\infty }}={{\log }_{e}}({{3}^{2}})={{\log }_{e}}9$
Hence the correct option is (A).
Note: Always try to convert the question in simplified form just as we did here. We first simplified the terms of the given sequence by converting the fractions into simple terms and then applied the formula for summation of infinite terms of a G.P. Here, we have to sum infinite terms so the formula for summation of $n$ terms cannot be used.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

