
The value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] is ___________
A - $2 + \sqrt 2 $
B - $2 - \sqrt 2 $
C - $ - \left( {2 + \sqrt 2 } \right)$
D - $ - \left( {2 - \sqrt 2 } \right)$
Answer
467.4k+ views
Hint: Firstly expand the determinant as general , on solving the determinant we get ${e^{i\theta }}$ form type things in it for this use ${e^{i\theta }} = \cos \theta + i\sin \theta $ apply it in the equation and also remember that $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $ .
Complete step-by-step answer:
As we have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] , So for this now we have to expand the given determinant , with respect to column $1$
So ,
$1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$ $ - $ ${e^{ - i\dfrac{\pi }{3}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] $ + $ ${e^{ - i\dfrac{\pi }{4}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|\]
So on expanding the determinant ,
$ \Rightarrow 1\left( {1 - {e^{i\dfrac{{2\pi }}{3}}}.{e^{ - i\dfrac{{2\pi }}{3}}}} \right) - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{{2\pi }}{3}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{i\dfrac{\pi }{3}}}.{e^{i\dfrac{{2\pi }}{3}}} - {e^{i\dfrac{\pi }{4}}}} \right)$
On solving further ,
$ \Rightarrow 0 - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{{5\pi }}{{12}}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{ - \pi }} - {e^{i\dfrac{\pi }{4}}}} \right)$
\[ \Rightarrow - \left( {1 - {e^{i\dfrac{{5\pi }}{{12}}}}.{e^{ - i\dfrac{\pi }{3}}}} \right) + \left( {{e^{ - \pi }}.{e^{ - i\dfrac{\pi }{4}}} - 1} \right)\]
$\Rightarrow - 2 + {e^{ - i\dfrac{\pi }{3} + i\dfrac{{5\pi }}{{12}}}} + {e^{ - i\dfrac{\pi }{4} - i\pi }}$
On solving the power we get the final solution ,
$ \Rightarrow - 2 + {e^{ - i\dfrac{{3\pi }}{4}}} + {e^{i\dfrac{{3\pi }}{4}}}$
Now we know that from the value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ , apply this on the above equation ,
$ \Rightarrow - 2 + \cos \dfrac{{ - 3\pi }}{4} + i\sin \dfrac{{ - 3\pi }}{4} + \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}$
We know that from the trigonometry that is $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $
So by using this we get ,
$ \Rightarrow - 2 + 2\cos \dfrac{{3\pi }}{4}$
Hence we know the value of $\cos \dfrac{{3\pi }}{4} = - \dfrac{1}{{\sqrt 2 }}$
$ - 2 - \dfrac{2}{{\sqrt 2 }}$ or we write as $ - 2 - \sqrt 2 $
So the option C is correct .
Note: The value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ is known as the Euler's formula . If we have a complex number$z = r\left( {\cos \theta + i\sin \theta } \right)$ written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is \[r.{e^{i\theta }}\]
Complete step-by-step answer:
As we have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] , So for this now we have to expand the given determinant , with respect to column $1$
So ,
$1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$ $ - $ ${e^{ - i\dfrac{\pi }{3}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] $ + $ ${e^{ - i\dfrac{\pi }{4}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|\]
So on expanding the determinant ,
$ \Rightarrow 1\left( {1 - {e^{i\dfrac{{2\pi }}{3}}}.{e^{ - i\dfrac{{2\pi }}{3}}}} \right) - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{{2\pi }}{3}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{i\dfrac{\pi }{3}}}.{e^{i\dfrac{{2\pi }}{3}}} - {e^{i\dfrac{\pi }{4}}}} \right)$
On solving further ,
$ \Rightarrow 0 - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{{5\pi }}{{12}}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{ - \pi }} - {e^{i\dfrac{\pi }{4}}}} \right)$
\[ \Rightarrow - \left( {1 - {e^{i\dfrac{{5\pi }}{{12}}}}.{e^{ - i\dfrac{\pi }{3}}}} \right) + \left( {{e^{ - \pi }}.{e^{ - i\dfrac{\pi }{4}}} - 1} \right)\]
$\Rightarrow - 2 + {e^{ - i\dfrac{\pi }{3} + i\dfrac{{5\pi }}{{12}}}} + {e^{ - i\dfrac{\pi }{4} - i\pi }}$
On solving the power we get the final solution ,
$ \Rightarrow - 2 + {e^{ - i\dfrac{{3\pi }}{4}}} + {e^{i\dfrac{{3\pi }}{4}}}$
Now we know that from the value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ , apply this on the above equation ,
$ \Rightarrow - 2 + \cos \dfrac{{ - 3\pi }}{4} + i\sin \dfrac{{ - 3\pi }}{4} + \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}$
We know that from the trigonometry that is $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $
So by using this we get ,
$ \Rightarrow - 2 + 2\cos \dfrac{{3\pi }}{4}$
Hence we know the value of $\cos \dfrac{{3\pi }}{4} = - \dfrac{1}{{\sqrt 2 }}$
$ - 2 - \dfrac{2}{{\sqrt 2 }}$ or we write as $ - 2 - \sqrt 2 $
So the option C is correct .
Note: The value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ is known as the Euler's formula . If we have a complex number$z = r\left( {\cos \theta + i\sin \theta } \right)$ written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is \[r.{e^{i\theta }}\]
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
