Answer
Verified
428.7k+ views
Hint: Firstly expand the determinant as general , on solving the determinant we get ${e^{i\theta }}$ form type things in it for this use ${e^{i\theta }} = \cos \theta + i\sin \theta $ apply it in the equation and also remember that $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $ .
Complete step-by-step answer:
As we have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] , So for this now we have to expand the given determinant , with respect to column $1$
So ,
$1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$ $ - $ ${e^{ - i\dfrac{\pi }{3}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] $ + $ ${e^{ - i\dfrac{\pi }{4}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|\]
So on expanding the determinant ,
$ \Rightarrow 1\left( {1 - {e^{i\dfrac{{2\pi }}{3}}}.{e^{ - i\dfrac{{2\pi }}{3}}}} \right) - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{{2\pi }}{3}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{i\dfrac{\pi }{3}}}.{e^{i\dfrac{{2\pi }}{3}}} - {e^{i\dfrac{\pi }{4}}}} \right)$
On solving further ,
$ \Rightarrow 0 - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{{5\pi }}{{12}}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{ - \pi }} - {e^{i\dfrac{\pi }{4}}}} \right)$
\[ \Rightarrow - \left( {1 - {e^{i\dfrac{{5\pi }}{{12}}}}.{e^{ - i\dfrac{\pi }{3}}}} \right) + \left( {{e^{ - \pi }}.{e^{ - i\dfrac{\pi }{4}}} - 1} \right)\]
$\Rightarrow - 2 + {e^{ - i\dfrac{\pi }{3} + i\dfrac{{5\pi }}{{12}}}} + {e^{ - i\dfrac{\pi }{4} - i\pi }}$
On solving the power we get the final solution ,
$ \Rightarrow - 2 + {e^{ - i\dfrac{{3\pi }}{4}}} + {e^{i\dfrac{{3\pi }}{4}}}$
Now we know that from the value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ , apply this on the above equation ,
$ \Rightarrow - 2 + \cos \dfrac{{ - 3\pi }}{4} + i\sin \dfrac{{ - 3\pi }}{4} + \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}$
We know that from the trigonometry that is $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $
So by using this we get ,
$ \Rightarrow - 2 + 2\cos \dfrac{{3\pi }}{4}$
Hence we know the value of $\cos \dfrac{{3\pi }}{4} = - \dfrac{1}{{\sqrt 2 }}$
$ - 2 - \dfrac{2}{{\sqrt 2 }}$ or we write as $ - 2 - \sqrt 2 $
So the option C is correct .
Note: The value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ is known as the Euler's formula . If we have a complex number$z = r\left( {\cos \theta + i\sin \theta } \right)$ written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is \[r.{e^{i\theta }}\]
Complete step-by-step answer:
As we have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] , So for this now we have to expand the given determinant , with respect to column $1$
So ,
$1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$ $ - $ ${e^{ - i\dfrac{\pi }{3}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] $ + $ ${e^{ - i\dfrac{\pi }{4}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|\]
So on expanding the determinant ,
$ \Rightarrow 1\left( {1 - {e^{i\dfrac{{2\pi }}{3}}}.{e^{ - i\dfrac{{2\pi }}{3}}}} \right) - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{{2\pi }}{3}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{i\dfrac{\pi }{3}}}.{e^{i\dfrac{{2\pi }}{3}}} - {e^{i\dfrac{\pi }{4}}}} \right)$
On solving further ,
$ \Rightarrow 0 - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{{5\pi }}{{12}}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{ - \pi }} - {e^{i\dfrac{\pi }{4}}}} \right)$
\[ \Rightarrow - \left( {1 - {e^{i\dfrac{{5\pi }}{{12}}}}.{e^{ - i\dfrac{\pi }{3}}}} \right) + \left( {{e^{ - \pi }}.{e^{ - i\dfrac{\pi }{4}}} - 1} \right)\]
$\Rightarrow - 2 + {e^{ - i\dfrac{\pi }{3} + i\dfrac{{5\pi }}{{12}}}} + {e^{ - i\dfrac{\pi }{4} - i\pi }}$
On solving the power we get the final solution ,
$ \Rightarrow - 2 + {e^{ - i\dfrac{{3\pi }}{4}}} + {e^{i\dfrac{{3\pi }}{4}}}$
Now we know that from the value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ , apply this on the above equation ,
$ \Rightarrow - 2 + \cos \dfrac{{ - 3\pi }}{4} + i\sin \dfrac{{ - 3\pi }}{4} + \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}$
We know that from the trigonometry that is $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $
So by using this we get ,
$ \Rightarrow - 2 + 2\cos \dfrac{{3\pi }}{4}$
Hence we know the value of $\cos \dfrac{{3\pi }}{4} = - \dfrac{1}{{\sqrt 2 }}$
$ - 2 - \dfrac{2}{{\sqrt 2 }}$ or we write as $ - 2 - \sqrt 2 $
So the option C is correct .
Note: The value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ is known as the Euler's formula . If we have a complex number$z = r\left( {\cos \theta + i\sin \theta } \right)$ written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is \[r.{e^{i\theta }}\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths