
The value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] is ___________
A - $2 + \sqrt 2 $
B - $2 - \sqrt 2 $
C - $ - \left( {2 + \sqrt 2 } \right)$
D - $ - \left( {2 - \sqrt 2 } \right)$
Answer
554.7k+ views
Hint: Firstly expand the determinant as general , on solving the determinant we get ${e^{i\theta }}$ form type things in it for this use ${e^{i\theta }} = \cos \theta + i\sin \theta $ apply it in the equation and also remember that $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $ .
Complete step-by-step answer:
As we have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] , So for this now we have to expand the given determinant , with respect to column $1$
So ,
$1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$ $ - $ ${e^{ - i\dfrac{\pi }{3}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] $ + $ ${e^{ - i\dfrac{\pi }{4}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|\]
So on expanding the determinant ,
$ \Rightarrow 1\left( {1 - {e^{i\dfrac{{2\pi }}{3}}}.{e^{ - i\dfrac{{2\pi }}{3}}}} \right) - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{{2\pi }}{3}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{i\dfrac{\pi }{3}}}.{e^{i\dfrac{{2\pi }}{3}}} - {e^{i\dfrac{\pi }{4}}}} \right)$
On solving further ,
$ \Rightarrow 0 - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{{5\pi }}{{12}}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{ - \pi }} - {e^{i\dfrac{\pi }{4}}}} \right)$
\[ \Rightarrow - \left( {1 - {e^{i\dfrac{{5\pi }}{{12}}}}.{e^{ - i\dfrac{\pi }{3}}}} \right) + \left( {{e^{ - \pi }}.{e^{ - i\dfrac{\pi }{4}}} - 1} \right)\]
$\Rightarrow - 2 + {e^{ - i\dfrac{\pi }{3} + i\dfrac{{5\pi }}{{12}}}} + {e^{ - i\dfrac{\pi }{4} - i\pi }}$
On solving the power we get the final solution ,
$ \Rightarrow - 2 + {e^{ - i\dfrac{{3\pi }}{4}}} + {e^{i\dfrac{{3\pi }}{4}}}$
Now we know that from the value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ , apply this on the above equation ,
$ \Rightarrow - 2 + \cos \dfrac{{ - 3\pi }}{4} + i\sin \dfrac{{ - 3\pi }}{4} + \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}$
We know that from the trigonometry that is $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $
So by using this we get ,
$ \Rightarrow - 2 + 2\cos \dfrac{{3\pi }}{4}$
Hence we know the value of $\cos \dfrac{{3\pi }}{4} = - \dfrac{1}{{\sqrt 2 }}$
$ - 2 - \dfrac{2}{{\sqrt 2 }}$ or we write as $ - 2 - \sqrt 2 $
So the option C is correct .
Note: The value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ is known as the Euler's formula . If we have a complex number$z = r\left( {\cos \theta + i\sin \theta } \right)$ written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is \[r.{e^{i\theta }}\]
Complete step-by-step answer:
As we have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] , So for this now we have to expand the given determinant , with respect to column $1$
So ,
$1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$ $ - $ ${e^{ - i\dfrac{\pi }{3}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] $ + $ ${e^{ - i\dfrac{\pi }{4}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|\]
So on expanding the determinant ,
$ \Rightarrow 1\left( {1 - {e^{i\dfrac{{2\pi }}{3}}}.{e^{ - i\dfrac{{2\pi }}{3}}}} \right) - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{{2\pi }}{3}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{i\dfrac{\pi }{3}}}.{e^{i\dfrac{{2\pi }}{3}}} - {e^{i\dfrac{\pi }{4}}}} \right)$
On solving further ,
$ \Rightarrow 0 - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{{5\pi }}{{12}}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{ - \pi }} - {e^{i\dfrac{\pi }{4}}}} \right)$
\[ \Rightarrow - \left( {1 - {e^{i\dfrac{{5\pi }}{{12}}}}.{e^{ - i\dfrac{\pi }{3}}}} \right) + \left( {{e^{ - \pi }}.{e^{ - i\dfrac{\pi }{4}}} - 1} \right)\]
$\Rightarrow - 2 + {e^{ - i\dfrac{\pi }{3} + i\dfrac{{5\pi }}{{12}}}} + {e^{ - i\dfrac{\pi }{4} - i\pi }}$
On solving the power we get the final solution ,
$ \Rightarrow - 2 + {e^{ - i\dfrac{{3\pi }}{4}}} + {e^{i\dfrac{{3\pi }}{4}}}$
Now we know that from the value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ , apply this on the above equation ,
$ \Rightarrow - 2 + \cos \dfrac{{ - 3\pi }}{4} + i\sin \dfrac{{ - 3\pi }}{4} + \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}$
We know that from the trigonometry that is $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $
So by using this we get ,
$ \Rightarrow - 2 + 2\cos \dfrac{{3\pi }}{4}$
Hence we know the value of $\cos \dfrac{{3\pi }}{4} = - \dfrac{1}{{\sqrt 2 }}$
$ - 2 - \dfrac{2}{{\sqrt 2 }}$ or we write as $ - 2 - \sqrt 2 $
So the option C is correct .
Note: The value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ is known as the Euler's formula . If we have a complex number$z = r\left( {\cos \theta + i\sin \theta } \right)$ written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is \[r.{e^{i\theta }}\]
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

