Answer
Verified
390.6k+ views
Hint: The given question might seem very lengthy at first, but the important attribute to pay attention to is that we can solve the term\[\sqrt {1 - \sin x} \] into simpler terms and same is the case for \[\sqrt {1 + \sin x} \]. We can solve them using the formula for the double angle of sine which goes as follows,
$ \sin 2x = 2\sin x\cos x $
The question will become very easy upon solving this part and then we can get the values inside in terms of cot so that we can easily cancel the inverse function of cot present in the question, to get our answer.
Complete step-by-step answer:
We can write from the double angle of sine as,
$ \sin 2x = 2\sin x\cos x $
Replacing $ x $ by $ \dfrac{x}{2} $ , we get,
$ \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} $
Adding $ 1 $ to both sides we get,
$ 1 + \sin x = 1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} $
As $ {\sin ^2}x + {\cos ^2}x = 1 $
$ {\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1 $
$
1 + \sin x = {\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \;
$
This becomes,
\[\sqrt {1 + \sin x} = \sin \dfrac{x}{2} + \cos \dfrac{x}{2}\]
The same will be the case upon solving for \[\sqrt {1 - \sin x} \]
Which will give,
\[\sqrt {1 - \sin x} = \cos \dfrac{x}{2} - \sin \dfrac{x}{2}\]
This will result in the question being reduced to
\[{\cot ^{ - 1}}\left[ {\dfrac{{\sin \dfrac{x}{2} + \cos \dfrac{x}{2} + \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{-\sin \dfrac{x}{2} + \cos \dfrac{x}{2} - \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right]\]
Upon solving this question we get,
\[{\cot ^{ - 1}}\left[ {\dfrac{{2\cos \dfrac{x}{2}}}{{-2\sin \dfrac{x}{2}}}} \right]\]
Since we know the formula,
$ \cot x = \dfrac{{\cos x}}{{\sin x}} $ ,
We can write as,
\[{\cot ^{ - 1}}\left( {\cot \left( {\dfrac{-x}{2}} \right)} \right)\]
$\Rightarrow \pi - \dfrac{x}{2} $
Since \[{\cot ^{ - 1}}\]and $ \cot $ can be cancelled as they are inverse of each other, but it will be $ \pi - \dfrac{x}{2} $ as there is negative inside the inverse function.
$\Rightarrow \pi - \dfrac{x}{2} $
Which results in the answer of the question being $ D $ .
So, the correct answer is “Option D”.
Note: The \[{\cot ^{ - 1}}\] function is the function which is the inverse of the trigonometric function $ \cot $ which stands for the cotangent function which is the reciprocal of the tangent function, this function is called as inverse cot function, this function gives the values of the radian at which the cotangent becomes a specific values when a value of the cotangent is entered. The function only gives output in radian not in degrees.
$ \sin 2x = 2\sin x\cos x $
The question will become very easy upon solving this part and then we can get the values inside in terms of cot so that we can easily cancel the inverse function of cot present in the question, to get our answer.
Complete step-by-step answer:
We can write from the double angle of sine as,
$ \sin 2x = 2\sin x\cos x $
Replacing $ x $ by $ \dfrac{x}{2} $ , we get,
$ \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} $
Adding $ 1 $ to both sides we get,
$ 1 + \sin x = 1 + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} $
As $ {\sin ^2}x + {\cos ^2}x = 1 $
$ {\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1 $
$
1 + \sin x = {\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \;
$
This becomes,
\[\sqrt {1 + \sin x} = \sin \dfrac{x}{2} + \cos \dfrac{x}{2}\]
The same will be the case upon solving for \[\sqrt {1 - \sin x} \]
Which will give,
\[\sqrt {1 - \sin x} = \cos \dfrac{x}{2} - \sin \dfrac{x}{2}\]
This will result in the question being reduced to
\[{\cot ^{ - 1}}\left[ {\dfrac{{\sin \dfrac{x}{2} + \cos \dfrac{x}{2} + \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{-\sin \dfrac{x}{2} + \cos \dfrac{x}{2} - \cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right]\]
Upon solving this question we get,
\[{\cot ^{ - 1}}\left[ {\dfrac{{2\cos \dfrac{x}{2}}}{{-2\sin \dfrac{x}{2}}}} \right]\]
Since we know the formula,
$ \cot x = \dfrac{{\cos x}}{{\sin x}} $ ,
We can write as,
\[{\cot ^{ - 1}}\left( {\cot \left( {\dfrac{-x}{2}} \right)} \right)\]
$\Rightarrow \pi - \dfrac{x}{2} $
Since \[{\cot ^{ - 1}}\]and $ \cot $ can be cancelled as they are inverse of each other, but it will be $ \pi - \dfrac{x}{2} $ as there is negative inside the inverse function.
$\Rightarrow \pi - \dfrac{x}{2} $
Which results in the answer of the question being $ D $ .
So, the correct answer is “Option D”.
Note: The \[{\cot ^{ - 1}}\] function is the function which is the inverse of the trigonometric function $ \cot $ which stands for the cotangent function which is the reciprocal of the tangent function, this function is called as inverse cot function, this function gives the values of the radian at which the cotangent becomes a specific values when a value of the cotangent is entered. The function only gives output in radian not in degrees.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE