Answer
Verified
366.6k+ views
Hint: The given problem requires us to simplify and find the value of the given trigonometric expression. The question requires thorough knowledge of trigonometric functions, formulae and identities. The question describes the wide ranging applications of trigonometric identities and formulae. We must keep in mind the trigonometric identities while solving such questions.
Complete step-by-step answer:
In the given question, we are required to evaluate the value of the trigonometric summation expression $ {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ....... + {\cos ^2}{90^ \circ } $ using the basic concepts of trigonometry, formulae and identities.
We are given the summation of squares of cosine functions with angles ranging from $ {1^ \circ } $ to $ {90^ \circ } $ .
Now, we know that the trigonometric functions sine and cosine are complementary of each other.
Writing the middlemost term and last few terms of the summation, we get,
$ \Rightarrow {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ...... + {\cos ^2}{45^ \circ } + ......{\cos ^2}{87^ \circ } + {\cos ^2}{88^ \circ } + {\cos ^2}{89^ \circ } + {\cos ^2}{90^ \circ } $
Now, expressing the angles of later half of terms as the compliments of the angle of first half of the terms in the summation, we get,
$ \Rightarrow {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ..... + {\cos ^2}{45^ \circ } + ......{\cos ^2}\left( {{{90}^ \circ } - {3^ \circ }} \right) + {\cos ^2}\left( {{{90}^ \circ } - {2^ \circ }} \right) + {\cos ^2}\left( {{{90}^ \circ } - {1^ \circ }} \right) + {\cos ^2}{90^ \circ } $ Now, we can use the trigonometric formula $ \cos x = \sin \left( {{{90}^ \circ } - x} \right) $ in order to simplify the trigonometric expression given to us.
$ \Rightarrow {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ...... + {\cos ^2}{45^ \circ } + ......{\sin ^2}\left( {{3^ \circ }} \right) + {\sin ^2}\left( {{2^ \circ }} \right) + {\sin ^2}\left( {{1^ \circ }} \right) + {\cos ^2}{90^ \circ } $
Now, grouping the sine and cosine terms with same angles. Similarly, the rest of the terms would also follow the same pattern except the term $ {\cos ^2}{45^ \circ } $ and $ {\cos ^2}{90^ \circ } $ . So, we get,
$ \Rightarrow \left( {{{\cos }^2}{1^ \circ } + {{\sin }^2}{1^ \circ }} \right) + \left( {{{\cos }^2}{2^ \circ } + {{\sin }^2}{2^ \circ }} \right) + \left( {{{\cos }^2}{3^ \circ } + {{\sin }^2}{3^ \circ }} \right) + ......\left( {{{\cos }^2}{{44}^ \circ } + {{\sin }^2}{{44}^ \circ }} \right) + {\cos ^2}{45^ \circ } + {\cos ^2}{90^ \circ } $
Now, we can use the trigonometric identity $ {\sin ^2}x + {\cos ^2}x = 1 $ in the expression. Hence, we get,
$ \Rightarrow \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + ......\left( 1 \right) + {\cos ^2}{45^ \circ } + {\cos ^2}{90^ \circ } $
So, adding all the ones in the summation and substituting the value of $ \cos {90^ \circ } $ as zero and $ \cos {45^ \circ } $ as $ \dfrac{1}{{\sqrt 2 }} $ , we get,
$ \Rightarrow 44 + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} + {\left( 0 \right)^2} $
Simplifying the expression, we get,
$ \Rightarrow 44 + \dfrac{1}{2} $
$ \Rightarrow \dfrac{{89}}{2} $
So, we get the value of the expression $ {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ....... + {\cos ^2}{90^ \circ } $ as $ \dfrac{{89}}{2} $ .
Hence, option (d) is correct.
So, the correct answer is “Option d”.
Note: All the trigonometric ratios can be converted into each other using the simple trigonometric identities listed above. The given problem involves the use of trigonometric formulae and identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rule come into significant use while solving such problems.
Complete step-by-step answer:
In the given question, we are required to evaluate the value of the trigonometric summation expression $ {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ....... + {\cos ^2}{90^ \circ } $ using the basic concepts of trigonometry, formulae and identities.
We are given the summation of squares of cosine functions with angles ranging from $ {1^ \circ } $ to $ {90^ \circ } $ .
Now, we know that the trigonometric functions sine and cosine are complementary of each other.
Writing the middlemost term and last few terms of the summation, we get,
$ \Rightarrow {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ...... + {\cos ^2}{45^ \circ } + ......{\cos ^2}{87^ \circ } + {\cos ^2}{88^ \circ } + {\cos ^2}{89^ \circ } + {\cos ^2}{90^ \circ } $
Now, expressing the angles of later half of terms as the compliments of the angle of first half of the terms in the summation, we get,
$ \Rightarrow {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ..... + {\cos ^2}{45^ \circ } + ......{\cos ^2}\left( {{{90}^ \circ } - {3^ \circ }} \right) + {\cos ^2}\left( {{{90}^ \circ } - {2^ \circ }} \right) + {\cos ^2}\left( {{{90}^ \circ } - {1^ \circ }} \right) + {\cos ^2}{90^ \circ } $ Now, we can use the trigonometric formula $ \cos x = \sin \left( {{{90}^ \circ } - x} \right) $ in order to simplify the trigonometric expression given to us.
$ \Rightarrow {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ...... + {\cos ^2}{45^ \circ } + ......{\sin ^2}\left( {{3^ \circ }} \right) + {\sin ^2}\left( {{2^ \circ }} \right) + {\sin ^2}\left( {{1^ \circ }} \right) + {\cos ^2}{90^ \circ } $
Now, grouping the sine and cosine terms with same angles. Similarly, the rest of the terms would also follow the same pattern except the term $ {\cos ^2}{45^ \circ } $ and $ {\cos ^2}{90^ \circ } $ . So, we get,
$ \Rightarrow \left( {{{\cos }^2}{1^ \circ } + {{\sin }^2}{1^ \circ }} \right) + \left( {{{\cos }^2}{2^ \circ } + {{\sin }^2}{2^ \circ }} \right) + \left( {{{\cos }^2}{3^ \circ } + {{\sin }^2}{3^ \circ }} \right) + ......\left( {{{\cos }^2}{{44}^ \circ } + {{\sin }^2}{{44}^ \circ }} \right) + {\cos ^2}{45^ \circ } + {\cos ^2}{90^ \circ } $
Now, we can use the trigonometric identity $ {\sin ^2}x + {\cos ^2}x = 1 $ in the expression. Hence, we get,
$ \Rightarrow \left( 1 \right) + \left( 1 \right) + \left( 1 \right) + ......\left( 1 \right) + {\cos ^2}{45^ \circ } + {\cos ^2}{90^ \circ } $
So, adding all the ones in the summation and substituting the value of $ \cos {90^ \circ } $ as zero and $ \cos {45^ \circ } $ as $ \dfrac{1}{{\sqrt 2 }} $ , we get,
$ \Rightarrow 44 + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} + {\left( 0 \right)^2} $
Simplifying the expression, we get,
$ \Rightarrow 44 + \dfrac{1}{2} $
$ \Rightarrow \dfrac{{89}}{2} $
So, we get the value of the expression $ {\cos ^2}{1^ \circ } + {\cos ^2}{2^ \circ } + {\cos ^2}{3^ \circ } + ....... + {\cos ^2}{90^ \circ } $ as $ \dfrac{{89}}{2} $ .
Hence, option (d) is correct.
So, the correct answer is “Option d”.
Note: All the trigonometric ratios can be converted into each other using the simple trigonometric identities listed above. The given problem involves the use of trigonometric formulae and identities. Such questions require thorough knowledge of trigonometric conversions and ratios. Algebraic operations and rules like transposition rule come into significant use while solving such problems.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations