Answer
Verified
492.6k+ views
Hint: Here we have to use the values of trigonometric ratios for a particular angle. And we have to use one property that is multiplication of anything with 0 is always 0.
Complete step-by-step answer:
As you can see in \[\cos {1^ \circ } \cdot \cos {2^ \circ } \cdot \cos {3^ \circ }.......\cos {180^ \circ }\]
It is product of cosine of all angle from ${1^ \circ }$ to ${180^ \circ }$
In which ${30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ }$ etc, most angles come as you know the value of the cosine of these angles.
AS you know the value of
$\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\cos {60^ \circ } = \dfrac{1}{2},\cos {90^ \circ } = 0$
We can write question like this
\[ \Rightarrow \cos {1^ \circ } \cdot \cos {2^ \circ } \cdot \cos {3^ \circ }......\cos {30^ \circ }....\cos {45^ \circ }....\cos {60^ \circ }.....\cos {90^ \circ }.....\cos {180^ \circ }\]
All values are in multiply so you know value of $\cos {90^ \circ } = 0$
\[ \Rightarrow \cos {1^ \circ } \cdot \cos {2^ \circ } \cdot \cos {3^ \circ }......\cos {30^ \circ }....\cos {45^ \circ }....\cos {60^ \circ }..... \times 0 \times .....\cos {180^ \circ }\]
As you know the multiple of 0 from any number then result comes to 0
$ \Rightarrow 0$
Answer is 0.
So, the correct option is (b).
Note: Whenever you come to these type of problem you have to use known value of trigonometric angle (like \[\sin {30^ \circ },\tan {45^ \circ }\] etc) and try to use these values in equation after some rearrangement then you can easily get answer.
Complete step-by-step answer:
As you can see in \[\cos {1^ \circ } \cdot \cos {2^ \circ } \cdot \cos {3^ \circ }.......\cos {180^ \circ }\]
It is product of cosine of all angle from ${1^ \circ }$ to ${180^ \circ }$
In which ${30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ }$ etc, most angles come as you know the value of the cosine of these angles.
AS you know the value of
$\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\cos {60^ \circ } = \dfrac{1}{2},\cos {90^ \circ } = 0$
We can write question like this
\[ \Rightarrow \cos {1^ \circ } \cdot \cos {2^ \circ } \cdot \cos {3^ \circ }......\cos {30^ \circ }....\cos {45^ \circ }....\cos {60^ \circ }.....\cos {90^ \circ }.....\cos {180^ \circ }\]
All values are in multiply so you know value of $\cos {90^ \circ } = 0$
\[ \Rightarrow \cos {1^ \circ } \cdot \cos {2^ \circ } \cdot \cos {3^ \circ }......\cos {30^ \circ }....\cos {45^ \circ }....\cos {60^ \circ }..... \times 0 \times .....\cos {180^ \circ }\]
As you know the multiple of 0 from any number then result comes to 0
$ \Rightarrow 0$
Answer is 0.
So, the correct option is (b).
Note: Whenever you come to these type of problem you have to use known value of trigonometric angle (like \[\sin {30^ \circ },\tan {45^ \circ }\] etc) and try to use these values in equation after some rearrangement then you can easily get answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE