
The value of \[^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{0}}}}^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{10}}}}{ - ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{1}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{11}}}}{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{2}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{12}}}}.....{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{10}}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{20}}}}\;\] is:
A. $^{30}{C_{12}}$
B. $^{30}{C_{15}}$
C. $^{30}{C_{11}}$
D. $^{30}{C_{10}}$
Answer
507.6k+ views
Hint:This is based on the binomial expansion of ${(1 + x)^n}$ and ${(1 - x)^n}$ . Expand it in terms of combinatorial values. Then have the binomial expansion of ${(1 - {x^2})^{30}}$. Compare the coefficients of ${x^{30}}$ in the product of ${(1 + x)^n}$ and ${(1 - x)^n}$with ${(1 - {x^2})^{30}}$. This comparison will give the required result.
Complete step-by-step answer:
We know that the binomial expansion of ${(1 + x)^n}$ , as
${(1 + x)^n}{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + .....{ + ^n}{C_n}{x^n}$ .
Substitute n = 30 in above expression, we get
${(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}x{ + ^{30}}{C_2}{x^2} + .....{ + ^{30}}{C_{30}}{x^{30}} …...….(1)$
Also, we know that the binomial expansion of ${(1 - x)^n}$ , as
${(1 - x)^n}{ = ^n}{C_0}{ - ^n}{C_1}x{ + ^n}{C_2}{x^2} - ..... + {( - 1)^r}{\;^n}{C_r}{x^n} + ....$ .
Substitute n = 30 in above expression, we get
${(1 - x)^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}x{ + ^{30}}{C_2}{x^2} - .....{ + ^{30}}{C_{30}}{x^{30}}…...….(2)$
Also, we know that
${(1 + x)^{30}}{(1 - x)^{30}} = {(1 - {x^2})^{30}}…...….(3)$
Thus the coefficient of ${x^{30}}$ in the equation on both sides will be equal.
Now, in binomial expansion of ${(1 - {x^2})^{30}}$i.e. RHS of equation (3) , coefficient ${x^{30}}$will be $^{30}{C_{10}}$ .
Also, in the multiplication of both expressions, means in LHS of equation (3), the coefficient of ${x^{30}}$ will be
\[^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{0}}}}^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{10}}}}{ - ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{1}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{11}}}}{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{2}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{12}}}}.....{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{10}}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{20}}}}\;\],
Thus we get the comparison as:
\[^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{0}}}}^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{10}}}}{ - ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{1}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{11}}}}{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{2}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{12}}}}.....{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{10}}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{20}}}}\;\] = $^{30}{C_{10}}$
$\therefore $ Correct value will be $^{30}{C_{10}}$ .
So, the correct answer is “Option D”.
Note:The Binomial Theorem is a faster method for expanding (or multiplying out) a binomial expression with some exponent value. Any coefficient of the terms in expansion are represented by combinatorial terms. Such coefficients are known as binomial coefficient. Obviously such binomial coefficients are useful in combinatorics problems. It gives the number of different combinations of b elements that can be chosen from a set of n elements.This question is based on the concept that coefficients of the terms with same exponents of variables in expansion must be equal in any equation given.
Complete step-by-step answer:
We know that the binomial expansion of ${(1 + x)^n}$ , as
${(1 + x)^n}{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + .....{ + ^n}{C_n}{x^n}$ .
Substitute n = 30 in above expression, we get
${(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}x{ + ^{30}}{C_2}{x^2} + .....{ + ^{30}}{C_{30}}{x^{30}} …...….(1)$
Also, we know that the binomial expansion of ${(1 - x)^n}$ , as
${(1 - x)^n}{ = ^n}{C_0}{ - ^n}{C_1}x{ + ^n}{C_2}{x^2} - ..... + {( - 1)^r}{\;^n}{C_r}{x^n} + ....$ .
Substitute n = 30 in above expression, we get
${(1 - x)^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}x{ + ^{30}}{C_2}{x^2} - .....{ + ^{30}}{C_{30}}{x^{30}}…...….(2)$
Also, we know that
${(1 + x)^{30}}{(1 - x)^{30}} = {(1 - {x^2})^{30}}…...….(3)$
Thus the coefficient of ${x^{30}}$ in the equation on both sides will be equal.
Now, in binomial expansion of ${(1 - {x^2})^{30}}$i.e. RHS of equation (3) , coefficient ${x^{30}}$will be $^{30}{C_{10}}$ .
Also, in the multiplication of both expressions, means in LHS of equation (3), the coefficient of ${x^{30}}$ will be
\[^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{0}}}}^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{10}}}}{ - ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{1}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{11}}}}{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{2}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{12}}}}.....{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{10}}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{20}}}}\;\],
Thus we get the comparison as:
\[^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{0}}}}^{{\mathbf{30}}}{{\mathbf{C}}_{{\mathbf{10}}}}{ - ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{1}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{11}}}}{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{\mathbf{2}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{12}}}}.....{ + ^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{10}}}}{^{{\mathbf{30}}}}{{\mathbf{C}}_{{\mathbf{20}}}}\;\] = $^{30}{C_{10}}$
$\therefore $ Correct value will be $^{30}{C_{10}}$ .
So, the correct answer is “Option D”.
Note:The Binomial Theorem is a faster method for expanding (or multiplying out) a binomial expression with some exponent value. Any coefficient of the terms in expansion are represented by combinatorial terms. Such coefficients are known as binomial coefficient. Obviously such binomial coefficients are useful in combinatorics problems. It gives the number of different combinations of b elements that can be chosen from a set of n elements.This question is based on the concept that coefficients of the terms with same exponents of variables in expansion must be equal in any equation given.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
