Answer

Verified

348.6k+ views

**Hint:**The given equation is based on a special case of the binomial theorem. We can simply expand the equation using the binomial theorem, then square on both the sides and arrive at the answer using the formula: \[{(1 + x)^n} = \sum\limits_{}^n {_{r - 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\] . Finally, we need to find the value of \[C_1^2 + C_2^2 + ... + C_n^2\] by the above formula.

**Complete step by step answer:**

The Binomial Theorem is a technique for extending an expression elevated to some finite power. A binomial Theorem is a useful expansion method that can be used in Algebra, probability, and other fields. A binomial expression is an algebraic expression which contains two dissimilar terms. Example- \[a + b,{a^3} + {b^3}\] etc.

Binomial Theorem can be explained as-

If \[n \in N,x,y \in R\] then \[{(x + y)^n}{ = ^n}{\sum _{r = 0}}n{C_r}{x^{n - r}}{y^r}\]

where \[n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]

**Points to be noted are:**

-The total number of terms in the expansion of \[{(x + y)^n}\] are \[(n + 1)\].

-The sum of exponents of \[x\] and \[y\] is always \[n\].

-\[n{C_0},n{C_1},n{C_2},...,n{C_n}\] are called binomial coefficients and also represented by \[{C_0},{C_1},{C_2},...,{C_n}\].

-The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. \[n{C_0} = n{C_n},n{C_1} = n{C_{n - 1}},n{C_2} = n{C_{n - 2}}\] etc.

We can expand the equation with the help of formula as follows:

\[{(1 + x)^n} = \sum\limits_{}^n {_{r = 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\]

\[\Rightarrow {(1 + x)^n} = n{C_0} + x(n{C_1}) + {x^2}(n{C_2}) + ... + {x_n}(n{C_n})\]

Now if we square the equation, on the left-hand side we will get \[{(1 + x)^{2n}}\].

The coefficient of \[{x^n}\] in the equation \[{(1 + x)^{2n}}{ = ^{2n}}{C_n}\]

Hence, we will get the squared equation as follows:

\[^{2n}{C_n} = {(n{C_0})^2} + {(n{C_1})^2} + {(n{C_2})^2} + ... + {(n{C_n})^2}\]

Where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion.

**Therefore, we can conclude that: \[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\].**

**Note:**Here we have assumed \[n\] to be a rational number and \[x\] be a real number such that \[\left| x \right| < 1\]. To find binomial coefficients we can also use Pascal’s Triangle. Binomial coefficients refer to the integers which are coefficients in the binomial theorem.

\[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\] is one of the most important properties of binomial coefficient.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Establish a relation between electric current and drift class 12 physics CBSE

Guru Purnima speech in English in 100 words class 7 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Copper is not used as potentiometer wire because class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE