
The value of \[C_1^2 + C_2^2 + ... + C_n^2\] (where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion) is:
Answer
410.4k+ views
Hint:The given equation is based on a special case of the binomial theorem. We can simply expand the equation using the binomial theorem, then square on both the sides and arrive at the answer using the formula: \[{(1 + x)^n} = \sum\limits_{}^n {_{r - 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\] . Finally, we need to find the value of \[C_1^2 + C_2^2 + ... + C_n^2\] by the above formula.
Complete step by step answer:
The Binomial Theorem is a technique for extending an expression elevated to some finite power. A binomial Theorem is a useful expansion method that can be used in Algebra, probability, and other fields. A binomial expression is an algebraic expression which contains two dissimilar terms. Example- \[a + b,{a^3} + {b^3}\] etc.
Binomial Theorem can be explained as-
If \[n \in N,x,y \in R\] then \[{(x + y)^n}{ = ^n}{\sum _{r = 0}}n{C_r}{x^{n - r}}{y^r}\]
where \[n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Points to be noted are:
-The total number of terms in the expansion of \[{(x + y)^n}\] are \[(n + 1)\].
-The sum of exponents of \[x\] and \[y\] is always \[n\].
-\[n{C_0},n{C_1},n{C_2},...,n{C_n}\] are called binomial coefficients and also represented by \[{C_0},{C_1},{C_2},...,{C_n}\].
-The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. \[n{C_0} = n{C_n},n{C_1} = n{C_{n - 1}},n{C_2} = n{C_{n - 2}}\] etc.
We can expand the equation with the help of formula as follows:
\[{(1 + x)^n} = \sum\limits_{}^n {_{r = 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\]
\[\Rightarrow {(1 + x)^n} = n{C_0} + x(n{C_1}) + {x^2}(n{C_2}) + ... + {x_n}(n{C_n})\]
Now if we square the equation, on the left-hand side we will get \[{(1 + x)^{2n}}\].
The coefficient of \[{x^n}\] in the equation \[{(1 + x)^{2n}}{ = ^{2n}}{C_n}\]
Hence, we will get the squared equation as follows:
\[^{2n}{C_n} = {(n{C_0})^2} + {(n{C_1})^2} + {(n{C_2})^2} + ... + {(n{C_n})^2}\]
Where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion.
Therefore, we can conclude that: \[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\].
Note: Here we have assumed \[n\] to be a rational number and \[x\] be a real number such that \[\left| x \right| < 1\]. To find binomial coefficients we can also use Pascal’s Triangle. Binomial coefficients refer to the integers which are coefficients in the binomial theorem.
\[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\] is one of the most important properties of binomial coefficient.
Complete step by step answer:
The Binomial Theorem is a technique for extending an expression elevated to some finite power. A binomial Theorem is a useful expansion method that can be used in Algebra, probability, and other fields. A binomial expression is an algebraic expression which contains two dissimilar terms. Example- \[a + b,{a^3} + {b^3}\] etc.
Binomial Theorem can be explained as-
If \[n \in N,x,y \in R\] then \[{(x + y)^n}{ = ^n}{\sum _{r = 0}}n{C_r}{x^{n - r}}{y^r}\]
where \[n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Points to be noted are:
-The total number of terms in the expansion of \[{(x + y)^n}\] are \[(n + 1)\].
-The sum of exponents of \[x\] and \[y\] is always \[n\].
-\[n{C_0},n{C_1},n{C_2},...,n{C_n}\] are called binomial coefficients and also represented by \[{C_0},{C_1},{C_2},...,{C_n}\].
-The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. \[n{C_0} = n{C_n},n{C_1} = n{C_{n - 1}},n{C_2} = n{C_{n - 2}}\] etc.
We can expand the equation with the help of formula as follows:
\[{(1 + x)^n} = \sum\limits_{}^n {_{r = 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\]
\[\Rightarrow {(1 + x)^n} = n{C_0} + x(n{C_1}) + {x^2}(n{C_2}) + ... + {x_n}(n{C_n})\]
Now if we square the equation, on the left-hand side we will get \[{(1 + x)^{2n}}\].
The coefficient of \[{x^n}\] in the equation \[{(1 + x)^{2n}}{ = ^{2n}}{C_n}\]
Hence, we will get the squared equation as follows:
\[^{2n}{C_n} = {(n{C_0})^2} + {(n{C_1})^2} + {(n{C_2})^2} + ... + {(n{C_n})^2}\]
Where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion.
Therefore, we can conclude that: \[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\].
Note: Here we have assumed \[n\] to be a rational number and \[x\] be a real number such that \[\left| x \right| < 1\]. To find binomial coefficients we can also use Pascal’s Triangle. Binomial coefficients refer to the integers which are coefficients in the binomial theorem.
\[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\] is one of the most important properties of binomial coefficient.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
