
The value of \[C_1^2 + C_2^2 + ... + C_n^2\] (where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion) is:
Answer
517.2k+ views
Hint:The given equation is based on a special case of the binomial theorem. We can simply expand the equation using the binomial theorem, then square on both the sides and arrive at the answer using the formula: \[{(1 + x)^n} = \sum\limits_{}^n {_{r - 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\] . Finally, we need to find the value of \[C_1^2 + C_2^2 + ... + C_n^2\] by the above formula.
Complete step by step answer:
The Binomial Theorem is a technique for extending an expression elevated to some finite power. A binomial Theorem is a useful expansion method that can be used in Algebra, probability, and other fields. A binomial expression is an algebraic expression which contains two dissimilar terms. Example- \[a + b,{a^3} + {b^3}\] etc.
Binomial Theorem can be explained as-
If \[n \in N,x,y \in R\] then \[{(x + y)^n}{ = ^n}{\sum _{r = 0}}n{C_r}{x^{n - r}}{y^r}\]
where \[n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Points to be noted are:
-The total number of terms in the expansion of \[{(x + y)^n}\] are \[(n + 1)\].
-The sum of exponents of \[x\] and \[y\] is always \[n\].
-\[n{C_0},n{C_1},n{C_2},...,n{C_n}\] are called binomial coefficients and also represented by \[{C_0},{C_1},{C_2},...,{C_n}\].
-The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. \[n{C_0} = n{C_n},n{C_1} = n{C_{n - 1}},n{C_2} = n{C_{n - 2}}\] etc.
We can expand the equation with the help of formula as follows:
\[{(1 + x)^n} = \sum\limits_{}^n {_{r = 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\]
\[\Rightarrow {(1 + x)^n} = n{C_0} + x(n{C_1}) + {x^2}(n{C_2}) + ... + {x_n}(n{C_n})\]
Now if we square the equation, on the left-hand side we will get \[{(1 + x)^{2n}}\].
The coefficient of \[{x^n}\] in the equation \[{(1 + x)^{2n}}{ = ^{2n}}{C_n}\]
Hence, we will get the squared equation as follows:
\[^{2n}{C_n} = {(n{C_0})^2} + {(n{C_1})^2} + {(n{C_2})^2} + ... + {(n{C_n})^2}\]
Where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion.
Therefore, we can conclude that: \[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\].
Note: Here we have assumed \[n\] to be a rational number and \[x\] be a real number such that \[\left| x \right| < 1\]. To find binomial coefficients we can also use Pascal’s Triangle. Binomial coefficients refer to the integers which are coefficients in the binomial theorem.
\[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\] is one of the most important properties of binomial coefficient.
Complete step by step answer:
The Binomial Theorem is a technique for extending an expression elevated to some finite power. A binomial Theorem is a useful expansion method that can be used in Algebra, probability, and other fields. A binomial expression is an algebraic expression which contains two dissimilar terms. Example- \[a + b,{a^3} + {b^3}\] etc.
Binomial Theorem can be explained as-
If \[n \in N,x,y \in R\] then \[{(x + y)^n}{ = ^n}{\sum _{r = 0}}n{C_r}{x^{n - r}}{y^r}\]
where \[n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Points to be noted are:
-The total number of terms in the expansion of \[{(x + y)^n}\] are \[(n + 1)\].
-The sum of exponents of \[x\] and \[y\] is always \[n\].
-\[n{C_0},n{C_1},n{C_2},...,n{C_n}\] are called binomial coefficients and also represented by \[{C_0},{C_1},{C_2},...,{C_n}\].
-The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e. \[n{C_0} = n{C_n},n{C_1} = n{C_{n - 1}},n{C_2} = n{C_{n - 2}}\] etc.
We can expand the equation with the help of formula as follows:
\[{(1 + x)^n} = \sum\limits_{}^n {_{r = 0}n{C_r}{x^r}} = {C_0} + {C_1} + {C_2}{x^2} + ...{C_n}{x_n}\]
\[\Rightarrow {(1 + x)^n} = n{C_0} + x(n{C_1}) + {x^2}(n{C_2}) + ... + {x_n}(n{C_n})\]
Now if we square the equation, on the left-hand side we will get \[{(1 + x)^{2n}}\].
The coefficient of \[{x^n}\] in the equation \[{(1 + x)^{2n}}{ = ^{2n}}{C_n}\]
Hence, we will get the squared equation as follows:
\[^{2n}{C_n} = {(n{C_0})^2} + {(n{C_1})^2} + {(n{C_2})^2} + ... + {(n{C_n})^2}\]
Where \[{C_i}\] is the \[{i^{th}}\] coefficient of \[{(1 + x)^n}\] expansion.
Therefore, we can conclude that: \[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\].
Note: Here we have assumed \[n\] to be a rational number and \[x\] be a real number such that \[\left| x \right| < 1\]. To find binomial coefficients we can also use Pascal’s Triangle. Binomial coefficients refer to the integers which are coefficients in the binomial theorem.
\[C_1^2 + C_2^2 + ... + C_n^2{ = ^{2n}}{C_n} = \dfrac{{2n!}}{{n!n!}}\] is one of the most important properties of binomial coefficient.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

